Репродукцию вирусов в клеточных системах. Этапы репродукции

Отношения вируса с клеткой хозяина могут складываться по-разному. Условно эти отношения можно свести к трем типам.

Продуктивная инфекция: цикл репродукции вируса в клетке хозяина завершается образованием нового, многочисленного поколения вирусов, обычно сопровождается гибелью клетки хозяина.

Абортивная инфекция имеет место, если цикл репродукции вируса в клетке хозяина внезапно прерывается. Клетка хозяина сохраняет свою жизнедеятельность.

Вирогения характеризуется интеграцией (встраиванием) вирусной нуклеиновой кислоты в геном клетки хозяина, что приводит в дальнейшем к синхронной репликации ДНК клетки и нуклеиновой кислоты вируса. Клетка хозяина продолжает жить.

Размножение вирусов осуществляется путем репродукции их в клетке хозяина. Цикл репродукции представляет собой процесс подчинения клеточных механизмов чужеродной вирусной информации.

Функционально ферменты вирусов можно подразделить на 2 группы: ферменты, способствующие проникновению вирусной нуклеиновой кислоты в клетку и выходу образовавшихся вирионов в среду, и ферменты, участвующие в процессах транскрипции и репликации вирусной нуклеиновой кислоты.

Цикл репродукции можно подразделить на отдельные стадии.

1 стадия – хемосорбция вирусов на поверхности клетки хозяина

Хемосорбция возможна лишь при условии, если клетка несет на своей поверхности чувствительные рецепторы, комплементарные рецепторам данного вируса. В клетках животных и человека функцию рецепторов для пикорно- и арбовирусов выполняют липопротеиды, для миксо- и парамиксовирусов и аденовирусов – мукопротеиды.

У простоорганизованных вирусов рецепторами являются уникальные сочетания белковых субъединиц, находящихся на поверхности капсида. У более сложноорганизованных вирусов функцию рецепторов выполняют выросты суперкапсида в виде шипов или ворсинок.

2 стадия – проникновение вируса в клетку хозяина.

Пути проникновения вирусов в клетку могут быть различны. Предполагается, что многие вирусы проникают в клетку путем пиноцитоза , иливиропексиса . При пиноцитозе в районе хемосорбции вируса клеточная мембрана образует инвагинацию и заглатывает вирус. В составе пиноцитарной вакуоли вирус попадает в цитоплазму.

Некоторые вирусы проникают в клетку за счет слияния клеточных и вирусных мембран.

Проникновение фаговой ДНК в бактериальную клетку происходит за счёт частичного разрушения оболочки клетки фаговым лизоцимом и сократительной реакции остатка фага.

3 стадия – депротеинизация вируса.

Процесс депротеинизации вируса предусматривает освобождение его нуклеиновой кислоты от белков капсида. Как только вирусная нуклеиновая кислота освобождается от белков капсида, наступает так называемый скрытый период – периодэклипса . Предполагается, что в период эклипса вирусная нуклеиновая кислота проходит по цитоплазме клетки в район ядра.

4 стадия – синтез компонентов вируса.

Совокупность процессов этой стадии можно подразделить на три этапа:

Первый этап – подготовительный. Он предусматривает две цели: подавить функционирование генетического аппарата клетки, прекратить синтез клеточных белков и нуклеиновых кислот, перевести белок-синтезирующий аппарат клетки под контроль генома вируса; подготовить условия для репликации нуклеиновой кислоты и синтеза белков капсида вируса.

Второй этап – репликация нуклеиновой кислоты вируса. Для двухцепочечных ДНК – геномных вирусов характерен такой же путь реализации генетической информации, как и для других живых организмов. Процессу репликации ДНК предшествует транскрипция иРНК. Информационная РНК вируса транслируется рибосомами клетки и на вирус – полисоме по матрице иРНК идет синтез ранних вирусспецифических белков.

Как только синтезировались ранние вирусспецифические белки, начинается процесс репликации ДНК вируса. Репликация двух – цепочечной ДНК вируса идет по принципу репликации ДНК клеточных организмов полуконсервативным путем.

Процесс репликации одноцепочечной ДНК начинается с синтеза ее комплементарной пары. В результате образуется двухцепочечная кольцевая родительская ДНК.

Изучение механизма репликации РНК – геномных вирусов началось с 1961., когда были открыты РНК-геномные фаги.

У РНК-геномных вирусов молекула РНК одновременно является генетическим материалом и выполняет функцию иРНК и ДНК.

В 1970 г. в составе одноклеточных РНК-вирусов был обнаружен фермент РНК-зависимая ДНК-полимераза, свидетельствующая о наличии процесса обратной транскрипции. Позднее было доказано, что у онкогенных РНК-вирусов по матрице их РНК с участием РНК-зависимой
ДНК-полимеразы, содержащейся в вирионе, траскрибируется ДНК-копия. ДНК-копия из одноцепочечной переходит в репликативную двуцепочечную форму, которая обеспечивает репликацию РНК вируса и синтез необходимых ферментов.

Третий этап – синтез белков капсид.

Этот процесс отстает во времени от процесса репликации нуклеиновой кислоты вируса и начинается, когда репликация в полном разгаре. Синтез белков капсида происходит как в ядре, так и в цитоплазме клетки. Вирусспецифическая иРНК транслируется рибосомами клетки, и на вирус-полисоме идет синтез белков-предшественников. Из этого «фонда» белков-предшественников и формируются белки капсида вируса.

5 стадия – сборка вирионов, или морфогенез вируса.

У простоорганизованных вирусов белковые субъединицы капсида в строго упорядоченном соединении располагаются вокруг нуклеиновой кислоты. У сложноорганизованных вирусов в процессе сборки вирионов принимают участие и клеточные структуры – ядерная и цитоплазматическая мембраны.

6 стадия – выход вируса из клетки.

Этот процесс у разных вирусов осуществляется по-разному. Выход ДНК-геномных фагов происходит при полном лизисе клетки фаговым лизоцимом. Сложноорганизованные вирусы человека и животных выходят из клетки с участком цитоплазмы путем почкования через цитоплазматическую мембрану и оболочку, одновременно приобретая суперкапсид. Нередко выходу вирусов из клетки способствует переваривание ее фагоцитами крови. Вирусы растений из клетки в клетку могут переходить через межклеточные соединения – плазмодесмы.

Наиболее часто цикл репродукции вируса завершается продуктивной инфекцией – образованием многочисленной популяции (100–200) полноценных вирионов, что обычно сопровождается гибелью хозяина.

Таксономия, классификация

ПАРАМИКСОВИРУСЫ

Парамиксовирусы (семейство Paramyxoviridae от лат. para - около, myxa - слизь ) - семейство РНК-содержащих вирусов. Семейство содержит респираторно-синтициальный вирус, вирусы кори, паротита, парагриппа, передающиеся респираторным механизмом. В семейство Paramyxoviridae в соответствии с общепринятой клас­сификацией вирусов до последнего времени входили три рода: Paramyxovirus, Morbillivirus, Pneumovirus. Но недавно в классифика­цию внесены изменения.

Семейство Paramyxoviridae разделено на два подсемейства, уве­личено количество родов:

1. Подсемейство Paramyxovirinae включает роды Respirovirus (прежнее название - Paramyxovirus), Morbillivirus и Rubulavirus (новый род);

2. Подсемейство Pneumovirinae содержит роды Pneumovirus и Metapneumovirus.

2. Морфология, размеры, особенности генома

Строение вириона. Все представители семейства Paramyxoviridae имеют сходное строение. Это сложный РНК-геномный вирус круп­ных размеров. Типовым представителем является вирус Сендай (он патогенен для мышей), и ультраструктура парамиксовирусов рассматривается на этом примере (рис.5). Вирион имеет округлую форму, его диа­метр 150-300 нм. Снаружи находится липопротеиновый суперкапсид с множеством шипиков двух типов на поверхности (рис.4). Изнутри к суперкапсиду прилегает слой матриксного М-белка. В центральной части вириона находится тяж нуклеокапсида (РНП) со спиральным типом симметрии, свернутый в рыхлый клубок.

Рис. 4 Схема парамиксовируса Рис. 5 Электоронограмма вируса Сендай

Геном представлен крупной молекулой линейной однонитчатой минус-РНК, кодирующей 7 белков. Среди них основной капсидный белок NP, белки полимеразного комплекса L и Р, неструктурный С бе­лок (все они входят в состав нуклеокапсида), а также М-белок и по­верхностные гликопротеины. Это прикрепительные белки и белок слияния (F-белок). Прикрепительные белки образуют шипики одного типа, а F-белок - шипики другого типа. У разных парамиксовирусов прикрепительные белки представлены: HN (гемагглютинин-нейраминидаза), Н (гемагглютинин) или G-белком.

Парагрипп. По антигенам вирусных белков HN, NP, F различают 4 основных серотипа вирусов парагриппа. Типы 1, 2, 3 перекрестно реагируют с антителами к вирусу паротита. Вирус 4 типа отличается и имеет 2 подтипа (таким образом, предпологается наличие 5 типов вирусов парагриппа). Все вирусы парагриппа имеют HN - белок и поэтому проявляют гемагглютинирующую и нейраминидазную активность. Вирус парагриппа 1, 2 типа агглютинирует эритроциты кур, вирус парагриппа 3 агглютинирует только эритроциты морских свинок.



Парамиксовирус (рис. 5) связывается гликопротеинами (HN, H, или G) оболочки с поверхностью клетки (1). F-белок обеспечивает слияние оболочки вируса с плазматической мембраной клетки, без образования эндосом. Репликация генома сходна с репликацией минус РНК-геномных вирусов: РНК-полимераза вносится в клетку с нуклеокапсидом вируса. Геном транскрибируется в отдельные иРНК (2) для каждого белка и полноценную плюс-матрицу (3) для геномной РНК. Новые геномы взаимодействуют с L-, P- и NP-белками, образуя нуклеокапсиды. Синтезированный матриксный белок перемещается к внутреннему слою мембраны клетки. Предшественники гликопротеиновых шипов оболочки синтезируются на рибосомах, связанных с мембранами эндоплазматического ретикулума (ЭР). Они гликозилируются, перемещаясь через ЭР и аппарат Гольджи (АГ), встраиваясь в мембрану клетки. Нуклеокапсид связывается с матриксным белком и гликопротеинмодифицированной мембраной (суперкапсидом). Вирионы выходят из клетки (4)почкованием.

Рис. 5 Репродукция парамиксовирусов

Парамиксовирусы обладают способностью с помощью F-белка переходить в соседние клетки, вызывая их слияние. При этом образу­ются многоядерные гигантские клетки - синцитии (симпласты). Такой механизм позволяет вирусам распространяться непосредственно из клетки в клетку, избегая действия вируснейтрализующих антител. Способность к симпластооброзаванию - характерный признак парамиксовирусов.

Подборка по базе: Ответы на вопросы по тесту по БЖД.docx , ИИСиТ - вопросы 2018 ответы.docx , Контрольные вопросы для самостоятельной подготовки.docx , менеджмент теория вопросы.docx , ДКБ вопросы к экзамену.docx , 30 ответов на вопросы о беге.pdf , Тестовые вопросы.docx , тесты, вопросы 8РЯ.doc , Контрольные вопросы и задания с ответами для допуска к компьютер , Деловые и науч ком Темы. Вопросы к зачету.doc .
СОДЕРЖАНИЕ

Контрольные вопросы:

1. Репродукция ДНК-геномных вирусов: основные этапы, особенности репродукции…………………………………………………..……........……...3

2. Признаки репродукции вирусов в живых системах: лабораторные животные, куриные эмбрионы, культуры клеток…………………………………………......……………………..………16

3. Задача....................................................................................................20

Список литературы……………………………...……………………...........25

1.Репродукция ДНК-геномных вирусов: основные этапы, особенности репродукции

Репродукция вирусов

Процесс репродукции вирусов может быть условно разделен на две фазы. Первая фаза охватывает события , которые ведут к адсорбции и проникновению вируса в клетку, освобождению его внутреннего компонента и модификации его таким образом, что он способен вызвать инфекцию. Соответственно, первая фаза включает в себя три стадии: 1) адсорбция вируса на клетках; 2) проникновение вируса в клетки; 3) раздевание вируса в клетке. Эти стадии направлены на то, чтобы вирус был доставлен в соответствующие клеточные структуры, и его внутренний компонент был освобожден от защитных оболочек. Как только эта цель достигнута, начинается вторая фаза репродукции, в течение которой происходит экспрессия вирусного генома. Эта фаза включает в себя стадии: 1) транскрипции, 2) трансляции информационных РНК, 3) репликации генома, 4) сборки вирусных компонентов. Заключительной стадией репродукции является выход вируса из клетки.

Первая фаза репродукции.

I. Адсорбция вирионов на поверхности клетки.

Взаимодействие вируса с клеткой начинается с процесса адсорбции, т. е. прикрепления вирусных частиц к клеточной поверхности. Процесс адсорбции возможен при наличии соответствующих рецепторов на поверхности клетки и «узнающих» их субстанций на поверхности вируса. Самые начальные процессы адсорбции имеют неспецифический характер, и в основе их может лежать электростатическое взаимодействие положительно и отрицательно заряженных группировок на поверхности вируса и клетки. Однако узнавание клеточных рецепторов вирусными белками, ведущее к прикреплению вирусной частицы к клетке, является высоко специфическим процессом. Белки на поверхности вируса, узнающие специфические группировки на плазматической мембране клетки и обусловливающие прикрепление к ним вирусной частицы, называются прикрепительными белками.

Вирусы используют рецепторы, предназначенные для прохождения в клетку необходимых для ее жизнедеятельности веществ: питательных веществ, гормонов, факторов роста и т. д. Рецепторы могут иметь разную химическую природу и представлять собой белки, углеводный компонент белков и липидов, липиды. Рецепторами для вирусов гриппа и парамиксовирусов является сиаловая кислота в составе гликопротеидов и гликолипидов (ганглиозидов), для рабдовирусов и реовирусов - также углеводный компонент в составе белков и липидов, для пикорнавирусов и аденовирусов - белки, для некоторых вирусов - липиды. Специфические рецепторы играют роль не только в прикреплении вирусной частицы к клеточной поверхности. Они определяют дальнейшую судьбу вирусной частицы, ее внутриклеточный транспорт и доставку в определенные участки цитоплазмы и ядра, где вирус способен инициировать инфекционный процесс. Вирус может прикрепиться и к неспецифическим рецепторам и даже проникнуть в клетку, однако только прикрепление к специфическому рецептору приведет к возникновению инфекции.

Прикрепление вирусной частицы к клеточной поверхности вначале происходит путем образования единичной связи вирусной частицы с рецептором. Однако такое прикрепление непрочно, и вирусная частица может легко оторваться от клеточной поверхности - обратимая адсорбция. Для того чтобы наступила необратимая адсорбция, должны появиться множественные связи между вирусной частицей и многими молекулами рецепторов, т. е. должно произойти стабильное мультивалентное прикрепление. Количество молекул клеточных рецепторов в участках адсорбции может доходить до 3000. Стабильное связывание вирусной частицы с клеточной поверхностью в результате мультивалентного прикрепления происходит благодаря возможности свободного перемещения молекул рецепторов в липидном бислое плазматической мембраны, которое определяется подвижностью, «текучестью» белково-липидного слоя. Увеличение текучести липидов является одним из наиболее ранних событий при взаимодействии вируса с клеткой, следствием которого является формирование рецепторных полей в месте контакта вируса с клеточной поверхностью и стабильное прикрепление вирусной частицы к возникшим группировкам.

Количество специфических рецепторов на поверхности клетки колеблется между 104 и 105 на одну клетку. Рецепторы ряда вирусов могут быть представлены лишь в ограниченном наборе клеток-хозяев, и этим может определяться чувствительность организма к данному вирусу. Например, пикорнавирусы адсорбируются только на клетках приматов. Рецепторы для других вирусов, напротив, широко представлены на поверхности клеток различных видов , как, например, рецепторы для ортомиксовирусов и парамиксовирусов, представляющие собой сиалил-содержащие соединения. Поэтому эти вирусы имеют относительно широкий диапазон клеток, на которых может происходить адсорбция вирусных частиц. Рецепторами для ряда тогавирусов обладают клетки исключительно широкого круга хозяев: эти вирусы могут адсорбироваться и инфицировать клетки как позвоночных, так и беспозвоночных.

II. Проникновение вируса в клетку.

Исторически сложилось представление о двух альтернативных механизмах проникновения в клетку вирусов животных - путем виропексиса (эндоцитоза) и путем слияния вирусной и клеточной мембран. Однако оба эти механизма не исключают, а дополняют друг друга

Термин «виропексис», означает, что вирусная частица попадает в цитоплазму в результате инвагинации участка плазматической мембраны и образования вакуоли, которая содержит вирусную частицу.

Рецепторный эндоцитоз. Виропексис представляет собой частный случай рецепторного или адсорбционного эндоцитоза. Этот процесс является обычным механизмом, благодаря которому в клетку поступают питательные и регуляторные белки, гормоны, липопротеины и другие вещества из внеклеточной жидкости. Рецепторный эндоцитоз происходит в специализированных участках плазматической мембраны, где имеются специальные ямки, покрытые со стороны цитоплазмы особым белком с большой молекулярной массой - клатрином. На дне ямки располагаются специфические рецепторы. Ямки обеспечивают быструю инвагинацию и образование покрытых клатрином внутриклеточных вакуолей. Полупериод проникновения вещества внутрь клетки по этому механизму не превышает 10 мин с момента адсорбции. Количество образующихся в одну минуту вакуолей достигает более 2000. Таким Образом, рецепторный эндоцитоз представляет собой хорошо слаженный механизм, который обеспечивает быстрое проникновение в клетку чужеродных веществ.

Покрытые вакуоли сливаются с другими, более крупными цитоплазматическими вакуолями, образуя рецептосомы, содержащие рецепторы, но не содержащие клатрин, а те в свою очередь сливаются с лизосомами. Таким путем проникшие в клетку белки обычно транспортируются в лизосомы, где происходит их распад на аминокислоты; они могут и миновать лизосомы, и накапливаться в других участках клетки в недеградированной форме. Альтернативой рецепторного эндоцитоза является жидкостный эндоцитоз, когда инвагинация происходит не в специализированных участках мембраны. Большинство оболочечных и безоболочечных вирусов животных проникает в клетку по механизму рецепторного эндоцитоза. Эндоцитоз обеспечивает внутриклеточный транспорт вирусной частицы в составе эндоцитарной вакуоли, поскольку вакуоль может двигаться в любом направлении и сливаться с клеточными мембранами (включая ядерную мембрану), освобождая вирусную частицу в соответствующих внутриклеточных участках. Таким путем, например, ядерные вирусы попадают в ядро, а реовирусы - в лизосомы. Однако проникшие в клетку вирусные частицы находятся в составе вакуоли и отделены от цитоплазмы ее стенками. Им предстоит пройти ряд этапов, прежде чем они смогут вызвать инфекционный процесс.

Слияние вирусной, и клеточной мембран. Для того чтобы внутренний компонент вируса мог пройти через клеточную мембрану, вирус использует механизм слияния мембран. У оболочечных вирусов слияние обусловлено точечным взаимодействием вирусного белка слияния с липидами клеточной мембраны, в результате которого вирусная липопротеидная оболочка интегрирует с клеточной мембраной, а внутренний компонент вируса оказывается по другую ее сторону. У безоболочечных вирусов один из поверхностных белков также взаимодействует с липидами клеточных мембран, в результате чего внутренний компонент проходит через мембрану. Большинство вирусов животных выходит в цитозол из рецептосомы.

Если при эндоцитозе вирусная частица является пассивным пассажиром, то при слиянии она становится активным участником процесса. Белком слияния является один из ее поверхностных белков. К настоящему времени этот белок идентифицирован лишь у парамиксовирусов и ортомиксовирусов. У парамиксовирусов этот белок (Р-белок) представляет собой один из двух гликопротеидов, находящихся на поверхности вирусной частицы. Функцию белка слияния у вируса гриппа выполняет малая гемагглютинирующая субъединица.

Парамиксовирусы вызывают слияние мембран при нейтральном рН, и внутренний компонент этих вирусов может проникать в клетку непосредственно через плазматическую мембрану. Однако большинство оболочечных и безоболочечных вирусов вызывают слияние мембран только при низком значении рН - от 5,0 до 5,75. Если к клеткам добавить слабые основания (хлорид аммония, хлороквин и др.), которые в эндоцитарных вакуолях повышают рН до 6,0, слияния мембран не происходит, вирусные частицы остаются в вакуолях , и инфекционный процесс не возникает. Строгая зависимость слияния мембран от значений рН обусловлена конформационными изменениями вирусных белков слияния.

В лизосоме постоянно имеется низкое значение рН (4,9). В эндоцитарной вакуоли (рецептосоме) закисление создается за счет АТФ-зависимого «протонового насоса» еще на клеточной поверхности при образовании покрытой вакуоли. Закисление эндоцитарной вакуоли имеет большое значение для проникающих в клетку физиологических лигандов, так как низкое значение рН способствует диссоциации лиганда от рецептора и рециркуляции рецепторов.

Тот же механизм, который лежит в основе слияния вирусных и клеточных мембран, обусловливает индуцированный вирусами гемолиз и слияние плазматических мембран прилежащих друг к другу клеток с образованием многоядерных клеток, симпластов и синцитиев. Вирусы вызывают два типа слияния клеток: 1) «слияние снаружи» и 2) «слияние изнутри». «Слияние снаружи» происходит при высокой множественности инфекции и обнаруживается в течение первых часов после заражения. Этот тип слияния, описанный для парамиксовирусов, обусловлен белками заражающего вируса и не требует внутриклеточ­ного синтеза вирусных компонентов. Напротив, «слияние изнутри» происходит при низкой множественности инфекции, обнаруживается на сравнительно поздних стадиях инфекционного процесса и обусловлено вновь синтезиро­ванными вирусными белками. «Слияние изнут­ри» описано для многих вирусов: вирусов герпеса, онковирусов, возбудителей медленных инфекций и др. Этот тип слияния вызывают те же вирусные гликопротеиды, которые обеспечивают проникновение вируса в клетку.

III. Раздевание - депротеинизация вируса

Проникшие в клетку вирусные частицы должны раздеться для того, чтобы вызвать инфекционный процесс. Смысл раздевания заключается в удалении вирусных защитных оболочек, которые препятствуют экспрессии вирусного генома. В результате раздевания освобождается внутренний компонент вируса, который способен вызвать инфекционный процесс. Раздевание сопровождается рядом характерных особенностей: в результате распада вирусной частицы исчезает инфекционная активность, в ряде случаев появляется чувствительность к нуклеазам, возникает устойчивость к нейтрализующему действию антител, теряется фоточувствительность при использовании ряда препаратов.

Конечными продуктами раздевания являются сердцевины, нуклеокапсиды или нуклеиновые кислоты. Для ряда вирусов было показано, что продуктом раздевания являются не голые нуклеиновые кислоты, а нуклеиновые кислоты, связанные с внутренним вирусным белком. Например, конечным продуктом раздевания пикорнавирусов является РНК, ковалентно связанная с белком VРg, конечным продуктом раздевания аденовирусов является ДНК, ковалентно связанная с одним из внутренних вирусных белков.

В ряде случаев способность вирусов вызвать инфекционный процесс определяется возможностью их раздевания в клетке данной системы. Тем самым эта стадия является одной из стадий, лимитирующих инфекцию.

Раздевание ряда вирусов происходит в специализированных участках внутри клетки (лизосомах, структурах аппарата Гольджи, околоядерном пространстве, ядерных порах на ядерной мембране). При слиянии вирусной и клеточной мембран проникновение в клетку сочетается с раздеванием.

Раздевание и внутриклеточный транспорт являются взаимосвязанными процессами: при нарушении правильного внутриклеточного транспорта к местам раздевания вирусная частица попадает в лизосому и разрушается лизосомальными ферментами.

Вторая фаза репродукции .

I. Транскрипция.

Транскрипция осуществляется с помощью специального фермента - РНК-полимеразы, который связывает нуклеотиды путем образования 3-5´фосфодиэфирных мостиков. Такое связывание происходит лишь в присутствии ДНК-матрицы.

Продуктами транскрипции в клетке являются иРНК. Сама клеточная ДНК, являющаяся носителем генетической информации, не может непосредственно программировать синтез белка. Передачу генетической информации от ДНК к рибосомам осуществляет РНК-посредник. На этом основана центральная догма молекулярной биологии, которая выражается следующей формулой:

ДНК - транскрипция - РНК - трансляция - белок,

где стрелки показывают направление переноса генетической информации.

Реализация генетической информации у вирусов. Стратегия вирусного генома в отношении синтеза иРНК у разных вирусов различна. У ДНК-содержащих вирусов иРНК синтезируется на матрице одной из нитей ДНК. Формула переноса генетической информации у них такая же, как и в клетке:

ДНК - транскрипция - РНК - трансляция - белок.

ДНК-содержащие вирусы, репродукция которых происходит в ядре, используют для транскрипции клеточную полимеразу. К этим вирусам относятся паповавирусы, аденовирусы, вирусы герпеса. ДНК-содержащие вирусы, репродукция которых происходит в цитоплазме, не могут использовать клеточный фермент , находящийся в ядре. Транскрипция их генома осуществляется вирусспецифическим ферментом - ДНК-полимеразой, которая проникает в клетку в составе вируса. К этим вирусам относятся вирусы оспы и иридовирусы.

Ферменты, транскрибирующие вирусный геном. Транскрипция ряда ДНК-содержащих вирусов - паповавирусов, аденовирусов, вирусов герпеса, парвовирусов, гепаднавирусов. Осуществляется в ядре клетки, и в этом процессе широко используются механизмы клеточной транскрипции - ферменты транскрипции и дальнейшей модификации транскриптов. Транскрипция этих вирусов осуществляется клеточной РНК-полимеразой II - ферментом, который осуществляет транскрипцию клеточного генома. Однако особая группа транскриптов аденовируса синтезируется с помощью другого клеточного фермента - РНК-полимеразы III. У двух других семейств ДНК-содержащих вирусов животных - вирусов оспы и иридовирусов - транскрипция происходит в цитоплазме. Поскольку в цитоплазме нет клеточных полимераз, транскрипция этих вирусов нуждается в специальном вирусном ферменте - вирусной РНК-полимеразе. Этот фермент является структурным вирусным белком.

Регуляция транскрипции. Транскрипция вирусного генома строго регулируется на протяжении инфекционного цикла. Регуляция осуществляется как клеточными, так и вирусспецифическими механизмами. У некоторых вирусов, в основном ДНК-содержащих, существует три периода транскрипций - сверхранняя, ранняя и поздняя. К этим вирусам относятся вирусы оспы, герпеса, паповавирусы, аденовирусы. В результате сверхранней и ранней транскрипции избирательно считываются сверхранние и ранние гены с образованием сверхранних или ранних иРНК. При поздней транскрипции считывается другая часть вирусного генома - поздние гены, с образованием поздних иРНК. Количество поздних генов обычно превышает количество ранних генов. Многие сверхранние гены являются генами для неструктурных белков - ферментов и регуляторов транскрипции и репликации вирусного генома. Напротив, поздние гены обычно являются генами для структурных белков. Обычно при поздней транскрипции считывается весь геном, но с преобладанием транскрипции поздних генов.

Фактором регуляции транскрипции у ядерных вирусов является транспорт транскриптов из ядра в цитоплазму, к месту функционирования иРНК - полисомам.

Продуктом сверхранней транскрипции вирусов герпеса являются А-белки. Функция одного или нескольких из них необходима для транскрипции следующей группы генов, кодирующих Р-белки. В свою очередь Р-белки включают транскрипцию последней группы поздних генов, кодирующих У-белки. Такой тип регуляции получил название «каскадной».

II. Трансляция.

Это - процесс перевода генетической информации, содержащейся в иРНК на специфическую последовательность аминокислот в синтезируемых вирусспецифических белках. Синтез белка в клетке происходит в результате трансляции иРНК на рибосомах. В рибосомах идет слияние потока информации (в иРНК) с потоком аминокислот, которые приносят транспортные РНК (тРНК). В клетке существует большое количество разнообразных тРНК. Для каждой аминокислоты должна быть своя тРНК.

Молекула тРНК представляет собой односпиральную РНК со сложной структурой в виде кленового листа.

Связывание конкретной тРНК и аминокислоты осуществляет фермент аминоацилсинтетаза. Один конец тРНК связывается с аминокислотой, а другой - с нуклеотидами иРНК, которым они комплементарны. Три нуклеотида на иРНК кодируют одну аминокислоту и называются «триплет» или «кодон», а комплементарные кодону три нуклеотида на тРНК называются «антикодоном».

Процесс транскрипции состоит из трех фаз: инициации элонгации, терминации.

Инициация трансляции - наиболее ответственный этап в процессе трансляции, основанный на узнавании рибосомой иРНК и связывании с ее особыми участками. Рибосома узнает иРНК благодаря «шапочке» (кэп) на 5′-конце и скользит к 3′-концу, пока не достигнет инициаторного кодона, с которого начинается трансляция. В эукариотической клетке инициаторными кодонами являются кодоны АУГ (аденин, урацил, гуанин), кодирующие метионин. С метионина начинается синтез всех полипептидных цепей. Специфическое узнавание рибосомой вирусной и РНК осуществляется за счет вирусспецифических инициаторных факторов.

Вначале с иРНК связывается малая рибосомальная субъединица. К комплексу иРНК с малой рибосомальной субъединицей присоединяются другие компоненты, необходимые для начала трансляции. Это - несколько молекул белка, которые называются «инициаторные факторы». Их, по крайней мере, три в прокариотической клетке и более девяти в эукариотической клетке. Инициаторные факторы определяют узнавание рибосомой специфических иРНК. В результате формируется комплекс, необходимый для инициации трансляции, который называется «инициаторным комплексом». В инициаторный комплекс входят: иРНК; малая рибосомальная субъединица; аминоацил-тРНК, несущая инициаторную аминокислоту; инициаторные факторы; несколько молекул ГТФ (гуанозинтрифосфат).

В рибосоме осуществляется слияние потока информации с потоком аминокислот. Вхождение аминоацил-тРНК в А-центр большой рибосомальной субъединицы является следствием узнавания, а ее антикодон взаимодействует с кодоном иРНК, находящейся в малой рибосомальной субъединице. При продвижении иРНК на один кодон тРНК перебрасывается в пептидильный центр (П-центр), и ее аминокислота присоединяется к инициаторной аминокислоте с образованием первой пептидной связи. Свободная от аминокислоты тРНК выходит из рибосомы и может опять функционировать в транспорте специфических аминокислот. На ее место из A-центра в П-центр перебрасывается новая тРНК, и образуется новая пептидная связь. В A-центре появляется вакантный кодон иРНК, к которому немедленно присоединяется соответствующая тРНК, и происходит присоединение новых аминокислот к растущей полипептидной цепи.

Элонгация трансляции - процесс удлинения, наращивания полипептидной цепи, основанный на присоединении новых аминокислот с помощью пептидной связи. Происходит постоянное протягивание нити иРНК через рибосому и «декодирование» заложенной в ней генетической информации. Часто иРНК функционирует одновременно на нескольких рибосомах, каждая из которых синтезирует одну и ту же полипептидную нить , кодируемую данной иРНК.

Терминация трансляции происходит в тот момент, когда рибосома доходит до терминирующего кодона в составе иРНК (УАА, УГА, УАГ). Трансляция прекращается, и полипептидная цепь освобождается из полирибосомы. После окончания трансляции полирибосомы распадаются на субъединицы, которые могут войти в состав новых полирибосом.

Каждая и PHК функционирует на нескольких рибосомах. Группу рибосом, работающих на одной молекуле иРНК, называют полирибосомой или полисомой. Полисомы могут состоять от 4-6 до 20 и более рибосом.

Вирусспецифические полисомы могут быть как свободными, так и связанными с мембранами. Внутренние белки обычно синтезируются на свободных полисомах, гликопротеиды всегда синтезируются на полисомах, связанных с мембранами.

Поскольку геном вируса животных представлен молекулой, кодирующей более чем один белок, вирусы поставлены перед необходимостью синтеза либо длинной иРНК, кодирующей один гигантский полипептид-предшественник, который затем должен быть нарезан в специфических точках на функционально активные белки, либо коротких моноцистронных иРНК, каждая из которых кодирует один белок. Таким образом, существуют два способа формирования вирусных белков:

первый - иРНК транслируется в гигантский полипептид-предшественник, который после синтеза последовательно нарезается на зрелые функционально активные белки;

второй - иРНК транслируется с образованием зрелых белков или белков, которые лишь незначительно модифицируются после синтеза.

Первый способ трансляции характерен для РНК-содержащих плюс-нитевых вирусов - пикорнавирусов и тогавирусов. Их иРНК транслируется в гигантскую полипептидную цепь, так называемый полипротеид, который сползает в виде непрерывной ленты с рибосомного «конвейера» и нарезается на индивидуальные белки нужного размера. Нарезание вирусных белков - многоступенчатый процесс, осуществляемый как вирусспецифическими, так и клеточными протеазами.

Второй способ формирования белков характерен для ДНК-содержащих вирусов и большинства РНК-содержащих вирусов. При этом способе синтезируются короткие моноцистронные иРНК в результате избирательной транскрипции одного участка генома (гена). Однако эти вирусы широко используют механизм посттрансляционного нарезания белка.

В эукариотической клетке многие белки, в том числе вирусные, подвергаются посттрансляционным модификациям, зрелые функционально активные белки часто неидентичны их вновь синтезированным предшественникам. Широко распространены такие посттрансляционные ковалентные модификации, как гликозилирование, ацилирование, метилирование, сульфирование (образование дисульфидных связей), протеолитическое нарезание и, наконец, фосфорилирование. В результате вместо 20 генетически закодированных аминокислот из различных клеток разных органов эукариотов выделено около 140 дериватов аминокислот.

Гликозилирование. В составе сложно устроенных PHК - и ДНК-содержащих вирусов имеются белки, содержащие ковалентно присоединенные боковые цепочки углеводов, - гликопротеиды. Гликопротеиды расположены в составе вирусных оболочек и находятся на поверхности вирусных частиц.

Гликозилирование полипептидов - сложный многоступенчатый процесс, первые этапы которого начинаются уже в процессе синтеза полипептидов, и первый углеводный остаток присоединяется к полипептидной цепи, еще не сошедшей с рибосомы. Последующие этапы гликозилирования происходят путем последовательного присоединения углеводных остатков к углеводной цепочке в процессе транспорта полипептида к плазматической мембране. Углеводные остатки присоединяются по одному, и только при инициации синтеза олигосахаридной цепи переносится «блок». Окончательное формирование углеводной цепочки может завершаться на плазматической мембране перед сборкой вирусной частицы.

Гликозилирование влияет на транспорт, более того, транспорт неразрывно связан для гликопротеидов со стадийным гликозилированием. Убедительным доказательством этого служит влияние на вирусную репродукцию ингибиторов гликозилирования ; они полностью подавляют транспорт полипептидов, не нарушая и не ингибируя их синтеза.

При подавлении гликозилирования соответствующими ингибиторами (аналоги сахаров типа 2-дезоксиглкжозы, антибиотик туникамицин) блокируется сборка вирионов миксо-, рабдо-, α-вирусов или образуются неинфекционные вирионы вирусов герпеса и онковирусов.

Сульфирование. Некоторые белки сложно устроенных РНК - и ДНК-содержащих вирусов сульфируются после трансляции. Чаще всего сульфированию подвергаются гликопротеиды, при этом сульфатная группа связывается с углеводными остатками гликопротеида.

Ацилирование. Ряд гликопротеидов сложно устроенных РНК-содержащих вирусов (НА2 вируса гриппа, белок G вируса везикулярного стоматита, белок HN вируса ньюкаслской болезни и др.) содержат ковалентно связанные 1-2 молекулы жирных кислот.

Нарезание. Многие вирусные белки, и в первую очередь гликопротеиды, приобретают функциональную активность лишь после того, как произойдет их нарезание в специфических точках протеолитическими ферментами. Нарезание происходит либо с образованием двух функциональных белковых субъединиц (например, большая и малая субъединицы гемагглютинина вируса гриппа, два гликопротеида (Е2 и ЕЗ) вируса леса Семлики), либо с образованием одного функционально активного белка и неактивного фермента, например белки F и HN парамиксовирусов. Нарезание обычно осуществляется клеточными ферментами. У многих сложно устроенных вирусов животных, имеющих гликопротеиды, нарезание необходимо для формирования активных прикрепительных белков и белков слияния и, следовательно, для приобретения вирусами способности инфицировать клетку. Лишь после нарезания этих белков вирусная частица приобретает инфекционную активность. Таким образом, можно говорить о протеолитической активации ряда вирусов, осуществляемой с помощью клеточных ферментов.

Фосфорилирование. Фосфопротеиды содержатся практически в составе всех вирусов животных - РНК - и ДНК-содержащих, просто и сложно устроенных. В составе большинства вирусов обнаружены протеинкиназы, однако фосфорилирование может осуществляться как вирусными, так и клеточными ферментами. Обычно фосфорилируются белки, связанные с вирусным геномом и осуществляющие регулирующую роль в его экспрессии. С процессом фосфорилирирования связан механизм активного действия интерферона.

III. Репликация.

Репликацией называется синтез молекул нуклеиновой кислоты, гомологичных геному. В клетке происходит репликация ДНК, в результате которой образуются дочерние двунитчатые ДНК. Репликация происходит на расплетенных участках ДНК и идет одновременно на обеих нитях от 5′-конца к 3′-концу.

Поскольку две нити ДНК имеют противоположную полярность, а участок репликации («вилка») движется в одном направлении, одна цепь строится в обратном направлении отдельными фрагментами, которые называются фрагментами Оказаки (по имени ученого, впервые предложившего такую модель). После синтеза фрагменты Оказаки «сшиваются» лигазой в единую нить.

Репликация ДНК осуществляется ДНК-полимеразами. Для начала репликации необходим предварительный синтез короткого участка РНК на матрице ДНК, который называется затравкой. С затравки начинается синтез нити ДНК, после чего РНК быстро удаляется с растущего участка.

Репликация вирусных ДНК. Репликация генома ДНК-содержащих вирусов в основном катализируется клеточными фрагментами и механизм ее сходен с механизмом репликации клеточной ДНК.

Каждая вновь синтезированная молекула ДНК состоит из одной родительской и одной вновь синтезированной нити. Такой механизм репликации называется полуконсервативным.

У вирусов, содержащих кольцевые двунитчатые ДНК (паповавирусы), разрезается одна из нитей ДНК, что ведет к раскручиванию и снятию супервитков на определенном участке молекулы.

Видна нижняя суперспирализованная часть молекулы, расплетенная часть на большом участке и вновь образуемые репликационные петли.

При репликации однонитчатых ДНК (семейство парвовирусов) происходит образование двунитчатых форм, которые представляют собой промежуточные репликативные формы.

Репликативные комплексы. Поскольку образующиеся нити ДНК и РНК некоторое время остаются связанными с матрицей, в зараженной клетке формируются репликативные комплексы, в которых осуществляется весь процесс репликации (а в ряде случаев также и транскрипции) генома. Репликативный комплекс содержит геном, репликазу и связанные с матрицей вновь синтезированные цепи нуклеиновых кислот. Вновь синтезированные геномные молекулы немедленно ассоциируются с вирусными белками, поэтому в репликативных комплексах обнаруживаются антигены. В процессе репликации возникает частично двунитчатая структура с однонитчатыми «хвостами», так называемый репликативный предшественник.

Репликативные комплексы ассоциированы с клеточными структурами либо с предсуществующими, либо вирусиндуцируемыми. Например, репликативные комплексы пикорнавирусов ассоциированы с мембранами эндоплазматической сети , вирусов оспы - с цитоплазматическим матриксом, репликативные комплексы аденовирусов и вирусов герпеса в ядрах находятся в ассоциации со вновь сформированными волокнистыми структурами и связаны с ядерными мембранами. В зараженных клетках может происходить усиленная пролиферация клеточных структур, с которыми связаны репликативные комплексы, или их формирование из предсуществующего материала. Например, в клетках, зараженных пикорнавирусами, происходит пролиферация гладких мембран. В клетках, зараженных реовирусами, наблюдается скопление микротрубочек; в клетках, зараженных вирусами оспы, происходит формирование цитоплазматического матрикса.

В репликативных комплексах одновременно с синтезом геномных молекул осуществляется транскрипция и происходит сборка нуклеокапсидов и сердцевин, а при некоторых инфекциях - и вирусных частиц.

Регуляция репликации. Вновь образованная молекула геномной РНК может быть использована различным образом. Она может ассоциироваться с капсидными белками и войти в состав вириона, служить матрицей для синтеза новых геномных молекул, либо - для образования иРНК, наконец, у «плюс»-нитевых вирусов она может выполнять функции иРНК и связываться с рибосомами. В клетке существуют механизмы, регулирующие использование геномных молекул. Регуляция идет по принципу саморегуляции и реализуется путем взаимодействия вирусных РНК и белков благодаря возможности белок-нуклеинового и белок-белкового узнавания. Например, роль терминального белка пикорнавирусов заключается в запрещении трансляции иРНК и отборе молекул для формирования вирионов. Белок, связывающийся с 5′-концом геномной РНК, в свою очередь узнается капсидными белками и служит сигналом для сборки вирусной частицы с участием данной молекулы РНК. По тому же принципу отбираются геномные молекулы РНК у «минус»-нитевых вирусов. Молекула РНК входит в состав вириона или служит матрицей для репликации. Для переключения ее на транскрипцию должен возникнуть запрет белок-нуклеинового взаимодействия. В репликации ДНК аденовирусов участвует молекула белка, которая связывается с концом вирусной ДНК и необходима для начала репликации. Таким образом, для начала репликации необходим синтез вирусных белков: в присутствии ингибиторов белкового синтеза отсутствует переключение транскрипции на репликацию.

IV. Сборка вирусных частиц.

Синтез компонентов вирусных частиц в клетке разобщен и может протекать в разных структурах ядра и цитоплазмы. Вирусы, репликация которых проходит в ядрах, условно называют ядерными. В основном это ДНК-содержащие вирусы: аденовирусы, паповавирусы, парвовирусы, вирусы герпеса.

Вирусы, реплицирующиеся в цитоплазме, называют цитоплазматическими. К ним относятся из ДНК-содержащих вирус оспы и большинство РНК-содержащих вирусов, за исключением ортомиксовирусов и ретровирусов. Однако это разделение весьма относительно, потому что в репродукции тех и других вирусов есть стадии, протекающие соответственно в цитоплазме и ядре.

Внутри ядра и цитоплазмы синтез вирусспецифических молекул также может быть разобщен. Так, например, синтез одних белков осуществляется на свободных полисомах, а других - на полисомах, связанных с мембранами. Вирусные нуклеиновые кислоты синтезируются в ассоциации с клеточными структурами вдали от полисом, которые синтезируют вирусные белки. При таком дисъюнктивном способе репродукции образование вирусной частицы возможно лишь в том случае, если вирусные нуклеиновые кислоты и белки обладают способностью при достаточной концентрации узнавать друг друга в многообразии клеточных белков и нуклеиновых кислот и самопроизвольно соединяться друг с другом, т. е. способны к самосборке.

В основе самосборки лежит специфическое белок-нуклеиновое и белок-белковое узнавание, которое может происходить в результате гидрофобных, солевых и водородных связей, а также стерического соответствия. Белок-нуклеиновое узнавание ограничено небольшим участком молекулы нуклеиновой кислоты и определяется уникальными последовательностями нуклеотидов в некодирующей части вирусного генома. С этого узнавания участка генома вирусными капсидными белками начинается процесс сборки вирусной частицы. Присоединение остальных белковых молекул осуществляется за счет специфических белок-белковых взаимодействий или неспецифических белок-нуклеиновых взаимодействий.

В связи с разнообразием структуры вирусов животных разнообразны и способы формирования вирионов, однако можно сформулировать следующие общие принципы сборки:

У просто устроенных вирусов формируются провирионы, которые затем в результате модификаций белков превращаются в вирионы. У сложно устроенных вирусов сборка осуществляется многоступенчато. Сначала формируются нуклеокапсиды или сердцевины, с которыми взаимодействуют белки наружных оболочек.

Сборка сложно устроенных вирусов (за исключением сборки вирусов оспы и реовирусов) осуществляется на клеточных мембранах. Сборка ядерных вирусов происходит с участием ядерных мембран, сборка цитоплазматических вирусов - с участием мембран эндоплазматической сети или плазматической мембраны, куда независимо друг от друга прибывают все компоненты вирусной частицы.

У ряда сложно устроенных вирусов существуют специальные гидрофобные белки, выполняющие функции посредников между сформированными нуклеокапсидами и вирусными оболочками. Такими белками являются матриксные белки у ряда «минус»-нитевых вирусов (ортомиксовирусов, парамиксовирусов, рабдовирусов).

Сборка нуклеокапсидов, сердцевин, провирионов и вирионов происходит не во внутриклеточной жидкости, а в , предсуществующих в клетке или индуцированных вирусом («фабриках»).

Сложно устроенные вирусы для построения своих частиц используют ряд элементов клетки-хозяина, например липиды, некоторые ферменты, у ДНК-геномного 5V40 - гистоны, у оболочечных РНК-геномных вирусов - актин, а в составе ареновирусов обнаружены даже рибосомы. Клеточные молекулы несут определенные функции в вирусной частице, однако включение их в вирион может явиться и следствием случайной контаминации, как, например, включение ряда ферментов клеточных оболочек или клеточных нуклеиновых кислот.

Сборка ДНК-содержащих вирусов. В сборке ДНК-содержащих вирусов есть некоторые отличия от сборки РНК-содержащих вирусов. Как и у РНК-содержащих вирусов, сборка ДНК-содержащих вирусов является многоступенчатым процессом с образованием промежуточных форм, отличающихся от зрелых вирионов по составу полипептидов. Первый этап сборки заключается в ассоциации ДНК с внутренними белками и формировании сердцевин или нуклеокапсидов. При этом ДНК соединяется с предварительно сформированными «пустыми» капсидами.

В результате связывания ДНК с капсидами появляется новый класс промежуточных форм, которые называются неполными формами. Помимо неполных форм с разным содержанием ДНК, существует другая промежуточная форма в морфогенезе - незрелые вирионы, отличающиеся от зрелых тем, что содержат ненарезанные предшественники полипептидов. Таким образом, морфогенез вирусов тесно связан с модификацией (процессингом) белков.

Сборка ядерных вирусов начинается в ядре, обычно - с ассоциации с ядерной мембраной. Формирующиеся в ядре промежуточные формы вируса герпеса почкуются в перинуклеарное пространство через внутреннюю ядерную мембрану, и вирус приобретает таким путем оболочку, которая является дериватом ядерной мембраны. Дальнейшая достройка и созревание вирионов происходит в мембранах эндоплазматической сети и в аппарате Гольджи, откуда вирус в составе цитоплазматических везикул транспортируется на клеточную поверхность.

У непочкующихся липидсодержащих вирусов - вирусов оспы сборка вирионов происходит в уже описанных цитоплазматических вирусных «фабриках». Липидная оболочка вирусов в «фабриках» формируется из клеточных липидов путем автономной самосборки, поэтому липидный состав оболочек значительно отличается от состава липидов в клеточных мембранах.

V. Выход вирусных частиц из клетки.

Существуют два способа выхода вирусного потомства из клетки:

1) путем «взрыва»;

2) путем почкования.

Выход из клетки путем взрыва связан с деструкцией клетки, нарушением ее целостности, в результате чего находящиеся внутри клетки зрелые вирусные частицы оказываются в окружающей среде. Такой способ выхода из клетки присущ вирусам, не содержащим липопротеидной оболочки (пикорна-, рео-, парво-, папова-, аденовирусы). Однако некоторые из этих вирусов могут транспортироваться на клеточную поверхность до гибели клетки. Выход из клеток путем почкования присущ вирусам, содержащим липопротеидную мембрану, которая является дериватом клеточных мембран. При этом способе клетка может длительное время сохранять жизнеспособность и продуцировать вирусное потомство, пока не произойдет полное истощение ее ресурсов.

Процесс репродукции вирусов условно можно разделить на 2 фазы. Пер­вая фаза включает 3 стадии : 1) адсорбцию вируса на чувствительных клетках; 2) проникновение вируса в клетку; 3) депротеинизацию вируса. Вторая фаза включает стадии реализации вирусного генома : 1) транскрипцию, 2) трансля­цию, 3) репликацию, 4) сборку, созревание вирусных частиц и 5) выход вируса из клетки.

Взаимодействие вируса с клеткой начинается с процесса адсорбции, т. е. с прикрепления вируса к поверхности клетки.

Адсорбция представляет собой специфическое связывание вирионного белка (антирецептора) с комплементарной структурой клеточной поверхности — клеточным рецептором. По химической природе рецепторы, на которых фикси­руются вирусы, относятся к двум группам: мукопротеидным и липопротеидным. Вирусы гриппа, парагриппа, аденовирусы фиксируются на мукопротеидных рецепторах. Энтеровирусы, вирусы герпеса, арбовирусы адсорбируются на липопротеидных рецепторах клетки. Адсорбция происходит лишь при наличии определённых электролитов, в частности ионов Са2+, которые нейтрализуют из­быточные анионные заряды вируса и клеточной поверхности и уменьшают электростатическое отталкивание Адсорбция вирусов мало зависит от темпера­туры Начальные процессы адсорбции носят неспецифический характер, явля­ются результатом электростатического взаимодействия положительно и отрица­тельно заряженных структур на поверхности вируса и клетки, а затем наступает специфическое взаимодействие прикрепительного белка вириона со специфи­ческими группировками на плазматической мембране клетки. Простые вирусы человека и животных содержат прикрепительные белки в составе капсида. У сложно организованных вирусов прикрепительные белки входят в состав супер-капсида. Они могут иметь форму нитей (фибры у аденовирусов), либо шипов, грибоподобных структур у миксо-, ретро-, рабдо- и других вирусов. Вначале происходит единичная связь вириона с рецептором — такое прикрепление не­прочное — адсорбция носит обратимый характер. Чтобы наступила необратимая адсорбция, должы появиться множественные связи между рецептором вируса и рецептором клетки, т. е. стабильное мультивалентное прикрепление. Количество специфических рецепторов на поверхности одной клетки составляет 10 4 -10 5 . Рецепторы для некоторых вирусов, например, для арбовирусов. содержатся на клетках как позвоночных, так и беспозвоночных, для других вирусов только на клетках одного или нескольких видов.

Проникновение вирусов человека и животных в клетку происходит двумя путями: 1) виропексисом (пиноцитозом); 2) слиянием вирусной суперкапсидной оболочки е клеточной мембраной. Бактериофаги имеют свой механизм проник­новения, так называемый шприцевои, когда в результате сокращения белкового отростка фага нуклеиновая кислота как бы впрыскивается в клетку.

Депротеинизация вируса освобождение геиома вируса от вирусных за­щитных оболочек происходит либо с помощью вирусных ферментов, либо с помощью клеточных ферментов. Конечными продуктами депротеинизации яв­ляются нуклеиновые кислоты или нуклеиновые кислоты, связанные с внутрен­ним вирусным белком. Затем имеет место вторая фаза вирусной репродукции, ведущая к синтезу вирусных компонентов.

Транскрипция — переписывание информации с ДНК или РНК вируса на и-РНК по законам генетического кода.

Трансляция — процесс перевода генетической информации, содержащейся в и-РНК, на специфическую последовательность аминокислот.

Репликация — процесс синтеза молекул нуклеиновых кислот, гомологич­ных вирусному геному.

Реализация генетической информации у ДНК-содержащих вирусов идёт так же, как и в клетках:

ДНК транскрипция и-РНК трансляция белок

РНК транскрипция и-РНК трансляция белок

У вирусов с позитивным РНК-геномом (тогавирусы, пикорнавирусы) транскрипция отсутствует:

РНК трансляция белок

У ретровирусов — уникальный путь передачи генетической информации:

РНК обратная транскрипция ДНК транскрипция и-РНК трансляция белок

ДНК интегрируется с геномом клетки-хозяина (провирус).

После наработки клеткой вирусных компонентов наступает последняя стадия вирусной репродукции сборка вирусных частиц и выход вирионов из клетки. Выход вирионов из клетки осуществляется двумя путями: 1) путём «взрыва» клетки, в результате чего клетка разрушается. Этот путь присущ про­стым вирусам (пикорна-, рео-, папова- и аденовирусам), 2) выход из клеток пу­тём почкования. Присущ вирусам, содержащим суперкапсид. При этом способе клетка сразу не погибает, может дать многократное вирусное потомство, пока не истощатся её ресурсы.

Методы культивирования вирусов

Для культивирования вирусов в лабораторных условиях используются ледуюшие живые объекты: 1) культуры клеток (тканей, органов); 2) куриные мбрионы; 3) лабораторные животные.

Культуры клеток

Наибольшее распространение имеют однослойные культуры клеток, которые можно разделить на 1) первичные (первично трипсинизированные), 2) полуперевиваемые (диплоидные) и 3) перевиваемые.

По происхождению они классифицируются на эмбрионштьные, опухолевые и из взрослых организмов; по морфогенезу — на фибробластные, эпителиальные и др.

Первичные культуры клеток — это клетки какой-либо ткани человека или животного, которые имеют способность расти в виде монослоя на пластмассо­вой или стеклянной поверхности, покрытой специальной питательной средой. Срок жизни таких культур ограничен. В каждом конкретном случае их получа­ют из ткани после механического измельчения, обработки протеолитическими ферментами и стандартизации количества клеток. Первичные культуры, полу­ченные из почек обезьян, почек эмбриона человека, амниона человека, куриных эмбрионов, широко используются для выделения и накопления вирусов, а также для производства вирусных вакцин.

Полуперевиваемые (или диплоидные ) культуры клеток — клетки одного типа, способные in vitro выдерживать до 50-100 пассажей, сохраняя при этом свой исходный диплоидный набор хромосом. Диплоидные штаммы фибробластов эмбриона человека используются как для диагностики вирусных инфек­ций, так и при производстве вирусных вакцин.

Перевиваемые клеточные линии характеризуются потенциальным бес­смертием и гетероплоидным кариотипом.

Источником перевиваемых линий могут быть первичные клеточные культуры (например, СОЦ, ПЭС, ВНК-21 — из почек однодневных сирийских хомяков; ПМС — из почки морской свинки и др.) отдельные клетки которых об­наруживают тенденцию к бесконечному размножению in vitro. Совокупность изменений, приводящих к появлению из клеток таких особенностей, называют трансформацией, а клетки перевиваемых тканевых культур — трансформиро­ванными.

Другим источником перевиваемых клеточных линий являются злокачест­венные новообразования. В этом случае трансформация клеток происходит in vivo. Наиболее часто в вирусологической практике применяются такие линии перевиваемых клеток: HeLa — получена из карциномы шейки матки; Нер-2 — из карциномы гортани; Детройт-6 — из метастаза рака лёгкого в костный мозг; RH — из почки человека.

Для культивирования клеток необходимы питательные среды, которые по своему назначению делятся на ростовые и поддерживающие. В составе росто­вых питательных сред должно содержаться больше питательных веществ, чтобы обеспечить активное размножение клеток для формирования монослоя. Поддерживающие среды должны обеспечивать лишь переживание клеток в уже сформированном монослое при размножении в клетке вирусов.

Широкое применение находят стандартные синтетические среды, напри­мер, синтетическая среда 199 и среда Игла. Независимо от назначения все пита­тельные среды для культур клеток конструируются на основе сбалансированно­го солевого раствора. Чаще всего им является раствор Хенкса. Неотъемлемый компонент большинства ростовых сред — сыворотка крови животных (телячья, бычья, лошадиная), без наличия 5-10% которой размножение клеток и форми­рование монослоя не происходит. В состав поддерживающих сред сыворотка не входит.

Выделение вирусов в культурах клеток и методы их индикации.

При выделении вирусов из различных инфекционных материалов от больного (кровь, моча, фекалии, слизистые отделяемые, смывы из органов) применяют культуры клеток, обладающие наибольшей чувствительностью к предполагаемому вирусу. Для заражения используют культуры в пробирках с хорошо развитым монослоем клеток. Перед заражением клеток питательную среду удаляют и в каждую пробирку вносят по 0,1-0,2 мл взвеси испытуемого материала, предварительно обработанного антибиотиками для уничтожения бактерий и грибов. После 30-60 мин. контакта вируса с клетками удаляют избы­ток материала, вносят в пробирку поддерживающую среду и оставляют в тер­мостате до выявления признаков размножения вируса.

Индикатором наличия вируса в заражённых культурах клеток может слу­жить:

1) развитие специфической дегенерации клеток — цитопатическое действие ви­руса (ЦПД), которое имеет три основных типа: кругло- или мелкоклеточная дегенерация; образование многоядерных гигантских клеток — симпластов; развитие очагов клеточной пролиферации, состоящих из нескольких слоев клеток;

2) обнаружение внутриклеточных включений, располагающихся в цитоплазме и ядрах пораженных клеток;

3) положительная реакция гамагтлютинации (РГА);

4) положительная реакция гемадсорбции (РГАдс);

5) феномен бляшкообразования: монослой зараженных вирусом клеток покры­вается тонким слоем агара с добавлением индикатора нейтрального красно­го (фон — розовый). При наличии вируса в клетках образуются бесцветные зоны («бляшки») на розовом фоне агара.

6) при отсутствии ЦПД или ГА можно поставить реакцию интерференции: ис­следуемая культура повторно заражается вирусом, вызывающим ЦПД. В по­ложительном случае ЦПД будет отсутствовать (реакция интерференции по­ложительная). Если в исследуемом материале вируса не было, наблюдается ЦПД.

Выделение вирусов в куриных эмбрионах.

Для вирусологических исследований используют куриные эмбрионы 7-12-дневного возраста.

Перед заражением определяют жизнеспособность эмбриона. При овоско-пировании живые эмбрионы подвижны, хорошо виден сосудистый рисунок. Простым карандашом отмечают границы воздушного мешка. Заражают кури­ные эмбрионы в асептических условиях, стерильными инструментами, предва­рительно обработав скорлупу над воздушным пространством йодом и спиртом.

Методы заражения куриных эмбрионов могут быть различны: нанесение вируса на хорион-аллантоисную оболочку, в амниотическую и аллантоисную полости, в желточный мешок. Выбор метода заражения зависит от биологиче­ских свойств изучаемого вируса.

Индикация вируса в курином эмбрионе производится по гибели эмбрио­на, положительной реакции гемагглютинации на стекле с аллантоисной или амниотической жидкостью, по фокусным поражениям («бляшкам») на хорион-аллантоисной оболочке.

III. Выделение вирусов на лабораторных животных.

Лабораторные животные могут быть использованы для выделения виру­сов из инфекционного материала, когда невозможно применить более удобные системы (культуры клеток или куриные эмбрионы). Берут преимущественно новорождённых белых мышей, хомяков, морских свинок, крысят. Заражают животных по принципу цитотропизма вируса: пневмотропные вирусы вводятся интраназально, нейротропные — интрацеребрально, дерматотропные — на кожу.

Индикация вируса основана на появлении признаков заболевания у жи­вотных, их гибели, патоморфологических и патогистологических изменений в тканях и органах, а также по положительной реакции гемагглтотинации с экс­трактами из органов.

Не осуществляется бинарным делением. Еще в 50-х годах прошлого века было установлено, что размножение осуществляется методом репродукции (в переводе с англ. reproduce - делать копию, воспроизводить), то есть путем воспроизведения нуклеиновых кислот, а также синтеза белка с последующим сбором вирионов. Данные процессы происходят в различных частях клетки так называемого хозяина (к примеру, в ядре или цитоплазме). Данный разобщенный метод репродукции вирусов называется дизъюнктивным. Именно на этом мы и остановимся подробнее в нашей статье.

Процесс репродукции

Данный процесс имеет свои особенности репродукции вирусов и отличается последовательной сменой некоторых стадий. Рассмотрим их по отдельности.

Фазы

Вирусная репродукция в клетке осуществляется в несколько фаз, которые описаны ниже:

  1. Первая фаза представляет собой адсорбцию вируса, о которой речь шла выше, на поверхности клетки, которая является чувствительной к этому вирусу.
  2. Вторая представляет собой проникновение вируса в клетки хозяина методом виропексиса.
  3. Третья - это некое «раздевание» вирионов, высвобождение нуклеиновой кислоты от капсида и суперкапсида. У ряда вирусов попадание нуклеиновой кислоты в клетки происходит методом слияния вирионной оболочки и клетки-хозяина. В данном случае третья и вторая фазы объединяются в единую.

Адсорбция

Под этой стадией репродукции вирусов подразумевается проникновение вирусной частицы в клетки. Адсорбция начинается на клеточной поверхности при помощи взаимодействия клеточных, а также вирусных рецепторов. В переводе с латинского слово "рецепторы" означает "принимающий". Они представляют собой специальные чувствительные образования, которые воспринимают раздражения. Рецепторы - это молекулы либо молекулярные комплексы, расположенные на поверхности клеток, а также способны распознавать химические специфические группировки, молекулы либо другие клетки, связывать их. У наиболее сложных вирионов такие рецепторы располагаются с внешней оболочки в виде шиповидного выроста или ворсинки, у простых вирионов они находятся, как правило, на поверхности капсида.

Механизм адсорбции на поверхности восприимчивой клетки основывается на взаимодействии рецепторов с так называемыми комплементарными рецепторами "хозяйской" клетки. Рецепторы вириона и клетки являются некими специфическими структурами, которые расположены на поверхности.

Аденовирусы и миксовирусы адсорбируются непосредственно на мукопротеиновых рецепторах, а арбовирусы и пикорнавирусы ― на липопротеиновых рецепторах.

У вириона миксовирусов нейраминидаза разрушает мукогфотеиновый рецептор и отщепляет N-ацетилнейраминовые кислоты от олигосахарида, который содержит в себе галактозу и галактозамин. Их взаимодействия на данном этапе обратимы, ведь на них значительно влияет температура, реакция среды и солевые компоненты. Адсорбции вириона препятствуют гепарин и сульфатированные полисахариды, несущие при этом отрицательный заряд, однако их ингибирующее воздействие снимается некоторыми поликарионами (экмолин, ДЭАЭ-декстран, протаминсулъфат), нейтрализующие отрицательный заряд от сульфатированных полисахаридов.

Попадание вириона в "хозяйскую" клетку

Путь внедрения вируса в чувствительную к нему клетку не всегда будет одним и тем же. Многие вирионы способны проникать в клетки методом пиноцитоза, что в переводе с греческого означает "пить", "выпивать". При данном методе пиноцитозная вакуоль будто бы втягивает вирион непосредственно внутрь клетки. Остальные вирионы могут проникать в клетку напрямую сквозь ее оболочку.

Контакт фермента нейраминидаза с клеточными мукопротеидами способствует попаданию вирионов в клетку среди миксовирусов. Результаты исследований последних лет доказывают, что ДНК и РНК вирионов от внешней оболочки не отделяются, т. е. вирионы проникают целиком в чувствительные клетки путем пиноцитоза или виропексиса. На настоящий момент это подтверждено в отношении вируса оспы, осповакцины, а также других вирусов, выбирающих средой обитания организм животных. Если говорить о фагах, они заражают нуклеиновой кислотой клетки. Механизм заражения основывается на том, что те вирионы, которые содержатся в вакуолях клеток, гидролизуются ферментами (липаз, протеаз), в процессе чего от оболочки фага освобождается ДНК и попадает в клетку.

Для проведения эксперимента выполнялось заражение клетки с помощью нуклеиновой кислоты, которая была выделена от некоторых вирусов, и вызывается один полный цикл репродукции вирионов. Однако в естественных условиях инфицирования при помощи такой кислоты не происходит.

Дезинтеграция

Следующий этап репродукции вирусов - дезинтеграция, которая представляет собой освобождение НК от капсида и внешней оболочки. После попадания вириона в клетки, капсид переживает некоторые изменения, приобретая чувствительность к клеточному протеазу, затем он разрушается, параллельно освобождая НК. У отдельных бактериофагов в клетки попадает свободная НК. Фитопатогенный вирус проникает через повреждение в клеточной стенке, а затем он адсорбируется на внутреннем клеточном рецепторе с одновременным высвобождением НК.

Репликация РНК и синтез вирусного белка

Следующим этапом репродукции вирусов является синтез вирусоспецифичного белка, который происходит с участием так называемых информационных РНК (у отдельных вирусов они находятся в составе вирионов, а у некоторых синтезируются только в зараженных клетках непосредственно на матрице вирионной ДНК или РНК). Происходит репликация вирусной НК.

Процесс репродукция РНК-вирусов начинается после попадания нуклеопротеидов в клетку, где формируются вирусные полисомы методом комплексирования РНК с рибосомами. После этого синтезируются и ранние белки, куда следует отнести репрессоры из клеточного метаболизма, а также РНК-полимеразы, которые транслируются с родительской молекулой РНК. В цитоплазме наиболее мелких вирусов, либо в ядре, образуется вирусная двунитчатая РНК методом комплексирования родительской плюс-цепи («+» - РНК-цепь) с опять синтезированной, а также комплементарной с ней минус-цепи («-» - РНК-цепи). Соединение данных нитей из нуклеиновой кислоты провоцирует образование лишь однонитчатой структуры РНК, которая называется репликативной формой. Синтезы вирусной РНК осуществляются репликативными комплексами, в которых принимают участие репликативная форма РНК, фермент РНК-полимеразы, полисомы.

Существует 2 вида РНК-полимераз. К таковым относятся: РНК-полимераза I, которая катализирует формирование репликативной формы непосредственно на матрице плюс-цепи, а также РНК-полимераза II, которая принимает участие в синтезе однонитчатой вирусной РНК на матрице репликативного типа. Синтез нуклеиновых кислот у мелких вирусов происходит в цитоплазме. Что касается вируса гриппа, то в ядре синтезируется внутренний белок и РНК. РНК выделяется затем из ядра и проникает в цитоплазму, в которой совместно с рибосомами начинает синтезировать вирусный белок.

После попадания вирионов в клетки, в них подавляется синтез нуклеиновой кислоты, а также клеточных белков. При репродукции на матрице в ядре синтезируется еще и-РНК, которая несет в себе информацию для синтеза белка. Механизм синтеза вирусного белка осуществляется на уровне клеточной рибосомы, а источником построения будет аминокислотный фонд. Активизация аминокислот осуществляется ферментами, при помощи и-РНК переносятся непосредственно в рибосомы (полисомы), в которых они располагаются уже в синтезированной молекуле белков.

Таким образом, в зараженных клетках синтез нуклеиновых кислот и белков вириона осуществляется в составе репликативно-транскриптивного сложного комплекса, который регулируется некой системой механизма.

Морфогенез вириона

Образование вирионов может произойти только в случае строго упорядоченного соединения структурных вирусных полипептидов, а также их НК. А это обеспечивается так называемой самосборкой молекул белка около НК.

Формирование вириона

Формирование вириона происходит с участием некоторых структурных компонентов, входящих в состав клетки. Вирусы герпеса, полиомиелита и осповакцины образуются в цитоплазме, а аденовирусы ― в ядре. Синтез вирусной РНК, а также формирование нуклеокапсида происходит непосредственно в ядре, а гемагглютинин формируется в цитоплазме. После этого нуклеокапсид перебирается из ядра в цитоплазму, в которой осуществляется образование оболочки вириона. Нуклеокапсид покрывается снаружи вирусными белками, а в состав вириона при этом включаются гемагглютинины и нейраминидазы. Именно таким образом происходит образование потомства, например, вируса гриппа.

Высвобождение вириона из "хозяйской" клетки

Из "хозяйской" клетки частицы вируса выделяются одновременно (во время разрушения клеток) либо постепенно (без каких-либо разрушений клеток).

Именно в таком виде и происходит репродукция вирусов. Вирионы высвобождаются из клеток, как правило, двумя способами.

Первый метод

Первый способ подразумевает следующее: после абсолютного созревания вирионов непосредственно внутри клетки они округляются, там образуются вакуоли, а затем разрушается и клеточная оболочка. По завершению этих процессов вирионы выходят все одновременно и полностью из клеток (пикорнавирусы). Данный способ принято называть литическим.

Второй метод

Второй способ подразумевает процесс освобождения вирионов по мере их созревания в течение 2―6 часов на цитоплазматической мембране (миксовирусы и арбовирусы). Выделению из клетки миксовирусов способствует нейраминидазы, разрушающие клеточную оболочку. Во время этого способа 75-90 % вирионов выходят спонтанно в культуральную среду, а клетки постепенно погибают.

Понравилась статья? Поделитесь ей
Наверх