Как называются внутренние структуры вирусов. Что такое вирусы? Биология: виды и классификация вирусов

Строение вирусов является неклеточным, так как они не имеют никаких органелл. Одним словом, это переходная стадия между мертвой и живой материей. Вирусы были открыты русским биологом Д.И. Ивановским в 1892 году в процессе рассмотрения мозаичной болезни табака. Все строение вирусов - это РНК или ДНК, заключенные в белковую оболочку, называемую капсидом. Вирионом называется сформированная инфекционная частица.

Вирусы гриппа или герпеса имеют дополнительную липопротеидную оболочку, которая возникает из цитоплазматической мембраны клетки хозяев. Вирусы подразделяются на ДНК-содержащие и РНК-содержащие, ведь они могут иметь только 1 тип Однако подавляющее количество вирусов - это РНК-содержащие. Их геномы бывают одноцепочечными и двуцепочечными. Внутреннее строение вирусов позволяет им размножаться только лишь в клетках других организмов, и никак иначе. Они совершенно не проявляют никакой внеклеточной жизнедеятельности. Размеры широко распространенных вирусов - от 20 до 300 нм диаметром.

Строение вирусов-бактериофагов

Вирусы, которые поражают бактерии изнутри, называют Они способны проникнуть в и разрушить.

Тело бактериофага кишечной палочки имеет головку, из которой выходит полый стержень, укутанный чехлом На конце этого стержня находится базальная пластинка, на которой закреплены 6 нитей. Внутри головки находится молекула ДНК. При помощи специальных отростков вирус-бактериофаг прикрепляется к телу бактерии кишечной палочки. Используя специальный фермент, фаг растворяет и проникает внутрь. Далее из канала стержня за счет сокращений головки выпрыскивается молекула ДНК, и буквально через 15 минут бактериофаг полностью перестаивает метаболизм клетки бактерии на нужный ему лад. Бактерия перестает синтезировать свою ДНК - она теперь синтезирует нуклеиновую кислоту вируса. Все это завершается тем, что появляется около 200-1000 особей фагов, а клетка бактерии разрушается. Все бактериофаги делятся на вирулентные и умеренные. Последние не совершают репликаций в клетке бактерии, а вирулентные образуют поколение особей в уже зараженном участке.

Вирусные болезни

Строение и жизнедеятельность вирусов обуславливается тем, что они способны существовать только в клетках других организмов. Поселившись в любой клетке, вирус может вызвать серьезное заболевание. Нередко их атакам подвергаются сельскохозяйственные растения и животные. Данные заболевания резко ухудшают плодовитость культур и являются причиной многочисленной гибели животных.

Существуют вирусы, которые способны вызвать различные заболевания и у человека. Всем известны такие болезни, как оспа, герпес, грипп, полиомиелит, свинка, корь, желтуха и СПИД. Все они возникают из-за деятельности вирусов. Строение вируса оспы почти не отличается от строения вируса герпеса, так как они входят в одну группу - Herpes Virus, куда входят еще некоторые В наше время активно распространяется вирус иммунодефицита человека (ВИЧ). Как побороть его, пока никому неизвестно.

Строение и классификация вирусов

Вирусы относятся к царству Vira . Это

    мель­чайшие микробы («фильтрующиеся агенты»),

    не имеющие клеточного строения, белоксинтезирующей системы,

    Они являются автономными генетическими структурами и отличаются осо­бым, разобщенным (дизъюнктивным), спо­собом размножения (репродукции): в клетке отдельно синтезируются нуклеиновые кисло­ты вирусов и их белки, затем происходит их сборка в вирусные частицы.

    Сформированная вирусная частица называется вирионом.

Морфологию и структуру вирусов изучают с помощью электронной микроскопии, так как их размеры малы и сравнимы с толщиной оболочки бактерий.

Форма вирионов может быть различ­ ной (рис.):

    палочковидной (вирус табач­ной мозаики),

    пулевидной (вирус бешенства),

    сферической (вирусы полиомиелита, ВИЧ),

    ни­тевидной (филовирусы),

    в виде сперматозои­да (многие бактериофаги).

Размеры вирусов определяют:

    с помощью электронной микроскопии,

    методом улырафильтрации через фильтры с известным диаметром пор,

    методом ультрацентрифугирования.

Наиболее мелкими вирусами являются парвовирусы (18 нм) и вирус полиомиелита (около 20 нм), наиболее круп­ным - вирус натуральной оспы (около 350 нм).

Различают ДНК- и РНК-содержащие виру­ сы. Они обычно гаплоидны, т. е. имеют один набор генов. Исключением являются ретро-вирусы, имеющие диплоидный геном. Геном вирусов содержит от шести до нескольких со­тен генов и представлен различными видами нуклеиновых кислот:

    двунитевыми,

    однонитевыми,

    линейными,

    кольцевыми,

    фрагментированными.

Имеются также РНК-содержащие вирусы с отрицательным (минус-нить РНК) гено­ мом. Минус-нить РНК этих вирусов выпол­няет только наследственную функцию.

Различают:

    просто устроенные вирусы (на­пример, вирусы полиомиелита, гепатита А) и

    сложно устроенные вирусы (например, виру­сы кори, гриппа, герпеса, коронавирусы).

У просто устроенных вирусов (рис.) нуклеиновая кислота связана с белковой оболоч­кой, называемой капсидом (от лат. capsa - футляр). Капсид состоит из повторяющихся морфологических субъединиц- капсомеров. Нуклеиновая кислота и капсид взаимодействуют друг с другом и вместе называются нуклеокапсидом.

У сложноустроенных вирусов (рис.) капсид окружен липопротеиновой оболоч­ кой - суперкапсидом, или пеплосом. Оболочка вируса является производной структурой от мембран вирус-инфицированной клетки. На оболочке вируса расположены гликопроте иновые «шипы», или «шипики» (пепломеры, или суперкапсидные белки). Под оболочкой некоторых вирусов находится М-белок.

Таким образом, просто устроенные вирусы состоят из нуклеиновой кислоты и капсида. Сложно устроенные вирусы состоят из нукле­иновой кислоты, капсида и липопротеино­вой оболочки.

Вирионы имеют :

    спиральный,

    икосаэдрический (кубический) или сложный тип симметрии кап­сида (нуклеокапсида).

Спиральный тип сим­метрии обусловлен винтообразной структурой нуклеокапсида (например, у вирусов гриппа, коронавирусов). Икосаэдрический тип симметрии обусловлен образованием изометрически полого тела из капсида, содержащего вирусную нуклеи­новую кислоту (например, у вируса герпеса).

Капсид и оболочка (суперкапсид) защи­щают вирионы от воздействия окружающей среды, обусловливают избирательное взаимо­действие (адсорбцию) с определенными клет­ками, а также антигенные и иммуногенные свойства вирионов.

Внутренние структуры вирусов называют сер­ дцевиной. У аденовирусов сердцевина состоит из гистоноподобных белков, связанных с ДНК, у реовирусов - из белков внутреннего капсида.

В вирусологии используют следующие так­ сономические категории :

    семейство (название оканчивается на viridae ),

    подсемейство (на­звание оканчивается на virinae ),

    род (название оканчивается на virus ).

Однако названия родов и особенно подсемейств даны не для всех ви­русов. Вид вируса не получил биноминального названия, как у бактерий.

В основу классификации вирусов поло­ жены следующие категории:

    тип нуклеино­ вой кислоты (ДНК или РНК), ее структура, количество нитей (одна или две), особен­ ности воспроизводства вирусного генома (табл. 2.3),

    размер и морфология вирионов, количество капсомеров и тип симметрии нуклеокапсида, наличие оболочки (супер капсида).

    чувствительность к эфиру и дезоксихолату,

    место размножения в клетке,

    антигенные свойства и др.

Вирусы поражают позвоночных и беспозво­ночных животных, а также бактерии и расте­ния. Являясь основными возбудителями ин­фекционных заболеваний человека, они также участвуют в процессах канцерогенеза, могут передаваться различными путями, в том числе через плаценту (вирусы краснухи, цитомегалии и др.), поражая плод человека. Они могут приводить и к постинфекционным осложне­ниям - развитию миокардитов, панкреатитов, иммунодефицитов и др.

Кроме обычных (канонических) вирусов известны инфекционные молекулы, кото­рые не являются вирусами и называются прионами. Прионы- термин, предложенный С. Прузинером, представляет собой анаграм­му английских слов «инфекционная белковая частица.» Клеточная форма нормального прионового протеина (РгРС) имеется в организме млекопитающих, в том числе человека, и выпол­няет ряд регуляторных функций. Его кодирует PrP-ген, расположенный в коротком плече 20-й хромосомы человека. При прионных болезнях в виде трансмиссивных губкообразных энцефа­лопатии (болезнь Крейтцфельда-Якоба, куру и др.) прионный протеин приобретает другую, инфекционную форму, обозначаемую как РгР & (Sc - от scrapie - скрепи, прионной инфекции овец и коз). Этот инфекционный прионовый протеин имеет вид фибрилл и отличается от нор­мального прионного протеина третичной или четвертичной структурой.

Другими необычными агентами, близкими к вирусам, являются вироиды - небольшие молекулы кольцевой, суперспирализованной РНК, не содержащие

3.3. Физиология вирусов

Вирусы - облигатные внутриклеточные па­разиты, способные только к внутриклеточно­му размножению. В вирусинфицированной клетке возможно пребывание вирусов в раз­личных состояниях:

    воспроизводство многочисленных новых вирионов;

    пребывание нуклеиновой кислоты вируса в интегрированном состоянии с хромосомой клетки (в виде провируса);

    существование в цитоплазме клетки в ви­де кольцевых нуклеиновых кислот, напоми­нающих плазмиды бактерий.

Поэтому диапазон нарушений, вызывае­мых вирусом, весьма широк: от выраженной продуктивной инфекции, завершающейся ги­белью клетки, до продолжительного взаимо­действия вируса с клеткой в виде латентной инфекции или злокачественной трансформа­ции клетки.

Различают три типа взаимодействия вируса с клеткой : продуктивный, абортивный и интегративный.

1. Продуктивный тип - завершается обра­зованием нового поколения вирионов и ги­белью (лизисом) зараженных клеток (цитоли-тическая форма). Некоторые вирусы выходят из клеток, не разрушая их (нецитолитическая форма).

    Абортивный тип - не завершается обра­зованием новых вирионов, поскольку инфек­ционный процесс в клетке прерывается на одном из этапов.

    Интегративный тип, или вирогения -характеризуется встраиванием (интеграцией) вирусной ДНК в виде провируса в хромосому клетки и их совместным сосуществованием (совместная репликация).

    Репродукция вирусов (продуктивный)

Продуктивный тип взаимодействия виру­ са с клеткой, т. е. репродукция вируса (лат. re - повторение, productio - производство), проходит в 6 стадий:

1) адсорбция вирионов на клетке;

2) проникновение вируса в клетку;

3) «раздевание» и высвобождение вирусного генома (депротеинизация вируса);

4) синтез вирусных компонентов ;

5) формирование ви­рионов;

6) выход вирионов из клетки.

У раз­личных вирусов эти стадии отличаются

Адсорбция вирусов. Первая стадия репродук­ции вирусов - адсорбция, т. е. прикрепление вириона к поверхности клетки. Она протекает в две фазы. Первая фаза - неспецифическая, обусловленная ионным притяжением между вирусом и клеткой, включая и другие механиз­мы. Вторая фаза адсорбции - высокоспецифи­ ческая, обусловленная гомологией, комплемен-тарностью рецепторов чувствительных клеток и «узнающих» их белковых лигандов вирусов. Белки на поверхности вирусов, узнающие спе­цифические клеточные рецепторы и взаимо­действующие с ними, называются прикрепи­ тельными белками (в основном это гликопроте ины) в составе липопротеиновой оболочки.

Специфические рецепторы клеток имеют различную природу, являясь белками, липидами, углеводными компонентами белков, липидов и др. Так, рецепторами для вируса грип­па является сиаловая кислота в составе гли-копротеинов и гликолипидов (ганглиозидов) клеток дыхательных путей. Вирусы бешенства адсорбируются на ацетилхолиновых рецепто­рах нервной ткани, а вирусы иммунодефицита человека - на СО4-рецепторах Т-хелперов, моноцитов и дендритных клеток. На одной клетке находится от десяти до ста тысяч спе­цифических рецепторов, поэтому на ней могут адсорбироваться десятки и сотни вирионов.

Наличие специфических рецепторов лежит в основе избирательности поражения вируса­ми определенных клеток, тканей и органов. Это так называемый тропизм (греч. tropos - поворот, направление). Например, вирусы, репродуцирующиеся преимущественно в клетках печени, называются гепатотропными, в нервных клетках - нейротропными, в иммунокомпетентных клетках - иммунотропными и т. д.

Проникновение вирусов в клетку. Вирусы проникают в клетку путем рецептор-зависи­мого эндоцитоза (виропексиса), или слияния оболочки вируса с клеточной мембраной, или же в результате сочетания этих механизмов.

1 . Рецептор-зависимый эндоцитоз происхо­дит в результате захватывания и поглоще­ния вириона клеткой: клеточная мембрана с прикрепленным вирионом впячивается с образованием внутриклеточной вакуоли (эн­досомы), содержащей вирус. За счет АТФ-зависимого «протонного» насоса содержимое эндосомы закисляется, что приводит к слия­нию липопротеиновой оболочки сложно ор­ганизованного вируса с мембраной эндосомы и выходу вирусного нуклеокапсида в цитозоль клетки. Эндосомы объединяются с лизосомами, которые разрушают оставшиеся вирусные компоненты. Процесс выхода безоболочечных (просто организованных) вирусов из эн­досомы в цитозоль остается малоизученным.

2. Слияние обточки вириона с клеточной мемб­ раной характерно только для некоторых оболочечных вирусов (парамиксовирусов, ретровиру-сов, герпесвирусов), в составе которых имеются белки слияния. Происходит точечное взаимо­действие вирусного белка слияния с липидами клеточной мембраны, в результате чего вирус­ная липопротеиновая оболочка интегрирует с клеточной мембраной, а внутренний компонент вируса попадает в цитозоль.

А) «Раздевание» (депротеинизация) вирусов. В результате высвобождается его внутренний компонент, способный вызы­вать инфекционный процесс. Первые этапы «раздевания» вируса начинаются в процессе его проникновения в клетку путем слияния вирус­ных и клеточных мембран или же при выходе вируса из эндосомы в цитозоль. Последующие этапы «раздевания» вируса тесно взаимосвя­заны с их внутриклеточным транспортом к местам депротеинизации. Для разных вирусов существуют свои специализированные учас­тки «раздевания» в клетке: для пикорнавирусов- в цитоплазме с участием лизосом, аппарата Гольджи; для герпесвирусов - около­ядерное пространство или поры ядерной мем­браны; для аденовирусов - сначала структуры цитоплазмы, а затем ядро клетки. Конечными продуктами «раздевания» могут быть нуклеи­новая кислота, нуклеопротеин (нуклеокапсид) или сердцевина вириона. Так, конечным продуктом раздевания пикарновирусов является нуклеиновая кислота, ковалентно связанная с одним из внутренних белков. А у многих оболочечных РНК-содержащих вирусов ко­нечными продуктами «раздевания» могут быть нуклеокапсиды или сердцевины, которые не только не препятствуют экспрессии вирусного генома, а, более того, защищают его от кле­точных протеаз и регулируют последующие биосинтетические процессы.

В) Синтез вирусных компонентов. Синтез белков и нуклеиновых кислот вируса, который разобщен во времени и пространстве. Синтез осущест­вляется в разных частях клетки, поэтому такой способ размножения вирусов называется дизъ­ юнктивным (от лат. disjunctus - разобщенный).

С) Синтез вирусных белков . В зараженной клет­ке вирусный геном кодирует синтез двух групп белков:

1. неструктурных белков, обслуживаю­щих внутриклеточную репродукцию вируса на разных его этапах;

2. структурных белков, которые входят в состав вириона (геномные, связанные с геномом вируса, капсидные и су-перкапсидные белки).

К неструктурным бел­ кам относятся: 1) ферменты синтеза РНК или ДНК (РНК- или ДНК-полимеразы), обеспе­чивающие транскрипцию и репликацию ви­русного генома; 2) белки-регуляторы; 3) пред­шественники вирусных белков, отличающиеся своей нестабильностью в результате быстрого нарезания на структурные белки; 4) фермен­ты, модифицирующие вирусные белки, на­пример, протеиназы и протеинкиназы.

Синтез белков в клетке осуществляется в со­ответствии с хорошо известными процессами транскрипции (от лат. transcriptio - переписы­вание) путем «переписывания» генетической информации с нуклеиновой кислоты в нуклео-тидную последовательность информационной РНК (иРНК) и трансляции (от лат. translatio - передача) - считывания иРНК на рибосомах с образованием белков. Передача наследствен­ной информации в отношении синтеза иРНК у разных групп вирусов неодинакова.

I . ДНК-содержашие вирусы реализуют ге­нетическую информацию так же, как и кле­точный геном, по схеме:

геномная ДНК вируса -» транскрипция иРНК -» трансляция белка вируса.

Причем ДНК-содержашие вирусы исполь­зуют для этого процесса клеточную полимеразу (вирусы, геномы которых транскри­бируются в ядре клетки - аденовирусы, па-повавирусы, герпесвирусы) или собственную РНК-полимеразу (вирусы, геномы которых транскрибируются в цитоплазме, например поксвирусы).

II . Плюс-нитевые РНК-содержашие вирусы (например, пикорнавирусы, флавивирусы, тогавирусы) имеют геном, выполняющий функ­цию иРНК; он распознается и транслируется рибосомами. Синтез белков у этих вирусов осу­ществляется без акта транскрипции по схеме:

геномная РНК вируса -> трансляция белка вируса.

III . Геном минус-однонитевых РНК-содержаших вирусов (ортомиксовирусов, парамиксовирусов, рабдовирусов) и двунитевых (реовирусов) служит матрицей, с которой транскрибируется иРНК, при участии РНК-полимеразы, связанной с нуклеино­вой кислотой вируса. Синтез белка у них происхо­дит по схеме:

геномная РНК вируса -» транскрипция и-РНК - трансляция белка вируса.

IV . Ретровирусы (вирусы иммунодефицита человека, онкогенные ретровирусы) имеют уникальный путь передачи генетической ин­формации. Геном ретровирусов состоит из двух идентичных молекул РНК, т. е. является диплоидным. В составе ретровирусов есть осо­бый вирусоспецифический фермент - обрат­ная транскриптаза, или ревертаза, с помощью которой осуществляется процесс обратной транскрипции, т. е. на матрице геномной РНК синтезируется комплементарная однонитевая ДНК (кДНК). Комплементарная нить ДНК копируется с образованием двунитевой ком­плементарной ДНК, которая интегрирует в клеточный геном и в его составе транскриби­руется в иРНК с помощью клеточной ДНК-зависимой РНК-полимеразы. Синтез белков для этих вирусов осуществляется по схеме:

геномная РНК вируса -> комплементарная ДНК -» транскрипция иРНК

-»трансляция белка вируса.

Репликация вирусных геномов, т. е. синтез ви­русных нуклеиновых кислот, приводит к на­коплению в клетке копий исходных вирусных геномов, которые используются при сборке вирионов. Способ репликации генома зависит от типа нуклеиновой кислоты вируса, наличия вирусоспецифических или клеточных полимераз, а также от способности вирусов индуцировать образование полимераз в клетке.

Механизм репликации отличается у вирусов, имеющих:

1) двунитевую ДНК;

2) однонитевую ДНК;

3) плюс-однонитевую РНК;

4) минус-одноните-вую РНК;

5) двунитевую РНК;

6) идентичные плюс-нитевые РНК (ретровирусы).

1. Двунитевые ЛНК-вирусы . Репликация двунитевых вирусных ДНК происходит обычным полуконсервативным механизмом: после рас- плетения нитей ДНК к ним комплементарно достраиваются новые нити. Каждая вновь син­тезированная молекула ДНК состоит из одной родительской и одной вновь синтезирован­ной нити. К этим вирусам относится большая группа вирусов, которые содержат двунитевую ДНК в линейной (например, герпесвирусы, аденовирусы и поксвирусы) или в кольцевой форме, как папилломавирусы. У всех вирусов, кроме поксвирусов, транскрипция вирусного генома происходит в ядре.

Уникальный механизм репликации харак­терен для гепаднавирусов (вируса гепатита В). Геном гепаднавирусов представлен дву-нитевой кольцевой ДНК, одна нить которой короче (неполная плюс-нить) другой нити. Первоначально достраивается (рис. 3.7). Затем полная двунитевая ДНК с помощью клеточ­ной ДНК-зависимой РНК-полимеразы транс­крибируется с образованием небольших моле­кул иРНК и полной однонитевой плюс-РНК. Последняя называется прегеномной РНК; она является матрицей для репликации генома ви­руса. Синтезированные иРНК участвуют в про­цессе трансляции белков, в том числе вирусной РНК-зависимой ДНК-полимеразы (обратной транскриптазы). С помощью этого фермента мигрирующая в цитоплазму прегеномная РНК обратно транскрибируется в минус-нить ДНК, которая, в свою очередь, служит матрицей для синтеза плюс-нити ДНК. Этот процесс за­канчивается образованием двунитевой ДНК, содержащей неполную плюс-нить ДНК.

    Однонитевые ДНК-вирусы . Единствен­ными представителями однонитевых ДНК-вирусов являются парвовирусы. Парвовирусы используют клеточные ДНК-полимеразы для создания двунитевого вирусного генома, так называемой репликативной формы послед­ него. При этом на исходной вирусной ДНК (плюс-нить) комплементарно синтезируется минус-нить ДНК, служащая матрицей для синтеза плюс-нити ДНК нового вириона. Параллельно синтезируется иРНК, происхо­дит трансляция вирусных пептидов.

    Плюс-однонитевые РНК-вирусы . Эти виру­сы включают большую группу вирусов - пикорнавирусы, флавивирусы, тогавирусы (рис.3.8), у которых геномная плюс-нить РНК вы­полняет функцию иРНК. Например, РНК полиовирусов после проникновения в клетку связывается с рибосомами, работая как иРНК, и на ее основе синтезируется большой поли­пептид, который расщепляется на фрагменты: РНК-зависимую РНК-полимеразу, вирусные протеазы и капсидные белки. Полимераза на основе геномной плюс-нити РНК синтези­рует минус-нить РНК; формируется времен­но двойная РНК, названная промежуточным репликативным звеном. Это промежуточное репликативное звено состоит из полной плюс-нити РНК и многочисленных частично завер­шенных минус-нитей. Когда образованы все минус-нити, они используются как шаблоны для синтеза новых плюс-нитей РНК. Этот механизм используется как для размножения геномной РНК вируса, так и для синтеза боль­шого количества вирусных белков.

    Минус-однонитевые РНК-вирусы. Минус -однонитевые РНК-вирусы (рабдовирусы, парамиксовирусы, ортомиксовирусы) имеют в своем составе РНК-зависимую РНК-полиме­разу. Проникшая в клетку геномная минус- нить РНК трансформируется вирусной РНК-зависимой РНК-полимеразой в неполные и полные плюс-нити РНК. Неполные копии выполняют роль иРНК для синтеза вирусных белков. Полные копии являются матрицей (промежуточная стадия) для синтеза минус-нитей геномной РНК потомства

    Двунитевые РНК-вирусы. Механизм реп­ликации этих вирусов (реовирусов и ротави-русов) сходен с репликацией минус-однонитевых РНК-вирусов. Отличие состоит в том, что образовавшиеся в процессе транскрипции плюс-нити функционируют не только как иРНК, но и участвуют в репликации: они яв­ляются матрицами для синтеза минус-нитей РНК. Последние в комплексе с плюс-нитями РНК образуют геномные двунитевые РНК вирионов. Репликация вирусных нуклеиновых кислот этих вирусов происходит в цитоп­лазме клеток.

6 . Ретровирусы (плюс-нитевые диплоидные РНК-содержащие вирусы). Обратная транс-криптаза ретровирусов синтезирует (на матри­це РНК-вируса) минус-нить ДНК, с которой копируется плюс-нить ДНК с образованием двойной нити ДНК, замкнутой в кольцо (рис. 3.10). Далее двойная нить ДНК интегриру­ет с хромосомой клетки, образуя провирус. Многочисленные вирионные РНК образуются в результате транскрипции одной из нитей интегрированной ДНК при участии клеточной ДНК-зависимой РНК-полимеразы.

Формирование вирусов. Вирионы формиру­ются путем самосборки: составные части вириона транспортируются в места сборки ви­руса - участки ядра или цитоплазмы клетки. Соединение компонентов вириона обуслов­ лено наличием гидрофобных, ионных, водо­родных связей и стерического соответствия.

Существуют следующие общие принципы сборки вирусов :

Формирование вирусов- многоступенча­тый процесс с образованием промежуточных форм, отличающихся от зрелых вирионов по составу полипептидов.

    Сборка просто устроенных вирусов за­ключается во взаимодействии вирусных нук­леиновых кислот с капсидными белками и в образовании нуклеокапсидов.

    У сложноустроенных вирусов сначала фор­мируются нуклеокапсиды, которые взаимо­действуют с модифицированными мембранами клеток (будущей липопротеиновой оболочкой вируса).

Причем сборка вирусов, реплициру­ющихся в ядре клетки, происходит с участием мембраны ядра, а сборка вирусов, репликация которых идет в цитоплазме, осуществляется с участием мембран эндоплазматической сети или плазматической мембраны, куда встраиваются гликопротеины и другие белки оболочки вируса.

    У ряда сложноустроенных вирусов минус-нитевых РНК-вирусов (ортомиксовирусов, парамиксовирусов) в сборку вовлекается так назы­ваемый матриксный белок (М-белок), который расположен под модифицированной клеточной ембраной. Обладая гидрофобными свойствами, он выполняет роль посредника между нуклеокапсидом и вирусной липопротеиновой оболочкой.

Сложноустроенные вирусы в процессе формирования включают в свой состав неко­торые компоненты клетки хозяина, например липиды и углеводы.

Выход вирусов из клетки. Полный цикл реп­родукции вирусов завершается через 5-6 ч (вирус гриппа и др.) или через несколько су­ток (гепатовирусы, вирус кори и др.). Процесс репродукции вирусов заканчивается выходом их из клетки, который происходит взрывным путем или почкованием, экзоцитозом.

    Взрывной путь: из погибающей клетки одновременно выходит большое количество вирионов. По взрывному пути выходят из клетки просто устроенные вирусы, не имею­щие липопротеиновой оболочки.

    Почкование, экзоцшпт присущи вирусам, имеющим липопротеиновую оболочку, которая является производной от клеточных мембран. Сначала образовавшийся нуклеокапсид или сердцевина вириона транспортируется к кле­точным мембранам, в которые уже встроены вирусоспецифические белки. Затем в области контакта нуклеокапсида или сердцевины ви­риона с клеточной мембраной начинается вы­пячивание этих участков. Сформировавшаяся почка отделяется от клетки в виде сложно устроенного вируса. При этом клетка способна длительно сохранять жизнеспособность и про­дуцировать вирусное потомство.

Почкование вирусов, формирующихся в цитоплазме, может происходить либо через плазматическую мембрану (например, парамиксовирусы, тогавирусы), либо через мембраны эндоплазматической сети с последующим их выходом на поверх­ность клетки (например, буньявирусы).

Вирусы, формирующиеся в ядре клетки (например, герпесвирусы), почкуются в перинуклеарное пространство через модифициро­ванную ядерную мембрану, приобретая таким образом липопротеиновую оболочку. Затем они транспортируются в составе цитоплазма-тических везикул на поверхность клетки.








Вирусы - это мельчайшие живые организмы, размеры которых варьируют в пределах от 20 до 300 нм; в среднем они раз в пятьдесят меньше бактерий. Их нельзя увидеть с помощью светового микроскопа, и они проходят через фильтры, не пропускающие бактерий.

Происхождение вирусов

Исследователи часто задаются вопросом, живые ли вирусы ? Если считать живой любую структуру, обладающую генетическим материалом (ДНК или РНК) и способную к самовоспроизведению, то ответ должен быть утвердительным: да, вирусы - живые. Если же признаком живого считать наличие клеточного строения, то ответ будет отрицательным: вирусы не живые. К этому следует добавить, что вне клетки-хозяина вирусы неспособны к самовоспроизведению.

Для более полного представления о вирусах необходимо знать их происхождение в процессе эволюции. Существует предположение, хотя и недоказанное, что вирусы - это генетический материал, некогда «сбежавший» из прокариоти-ческих и эукариотических клеток и сохранивший способность к воспроизведению при возвращении в клеточное окружение.

Вне клетки вирусы находятся в совершенно инертном состоянии, однако они обладают набором инструкций (генетическим кодом), необходимых для того, чтобы вновь проникнуть в клетку и, подчинив ее своим инструкциям, заставить производить много идентичных себе (вирусу) копий. Следовательно, логично предположить, что в процессе эволюции вирусы появились позже клеток.

Строение вирусов

Строение вирусов очень простое. Они состоят из следующих структур:
1) сердцевины - генетического материала, представленного либо ДНК, либо РНК; ДНК или РНК может быть одноцепочечной или двухцепочечной;
2) капеида - защитной белковой оболочки, окружающей сердцевину;
3) нуклеокапсида - сложной структуры, образованной сердцевиной и капсидом;
4) оболочки - у некоторых вирусов, таких как ВИЧ и гриппа, имеется дополнительный липопротеиновый слой, происходящий из плазматической мембраны клетки-хозяина;
5) капсомеров - идентичных повторяющихся субъединиц, из которых часто бывают построены капсиды.

Общая форма капсида отличается высокой степенью симметрии, обусловливая способность вирусов к кристаллизации. Это дает возможность исследовать их как методом рентгеновской кристаллографии, так и с помощью электронной микроскопии. Как только в клетке-хозяине образуются субъединицы вируса, они сразу же могут путем самосборки объединиться в полную вирусную частицу. Упрощенная схема строения вируса показана на рисунке.

Для структуры капсида вируса характерны определенные типы симметрии, особенно полиэдрическая и спиральная. Полиэдр - это многогранник. Наиболее распространенная полиэдрическая форма у вирусов - икосаэдр, у которого имеется 20 треугольных граней, 12 углов и 30 ребер. На рисунке, А мы видим правильный икосаэдр, а на рисунке, Б - вирус герпеса, в частице которого 162 капсомера организованы в икосаэдр.


Наглядной иллюстрацией спиральной симметрии может служить показанный на рисунке, РНК-содержащий вирус табачной мозаики (ВТМ). Капсид этого вируса образован 2130 идентичными белковыми капсомерами.

ВТМ был первым вирусом , выделенным в чистом виде. При заражении этим вирусом на листьях больного растения появляются желтые крапинки - так называемая мозаика листьев (рис. 2.18, В). Вирусы распространяются очень быстро либо механически, когда больные растения или его части приходят в соприкосновение со здоровыми растениям, либо воздушным путем с дымом от сигарет, для изготовления которых были использованы зараженные листья.

Вирусы , атакующие бактерий, образуют группу, называемую бактериофагами или просто фагами. У некоторых бактериофагов имеются четко выраженная икосаэдрическая головка и хвост, обладающий спиральной симметрией). На рисунке приводятся схематические изображения некоторых вирусов , иллюстрирующие их относительные размеры и общее строение.


Все вирусы подразделяют на две группы: простые и сложные. Простые вирусы содержат нуклеиновую кислоту и несколько кодируемых ею полипептидов. Сложные вирусы состоят из нуклеиновой кислоты, липидов и углеводов, которые имеют клеточное происхождение, т. е. у большинства вирусов не кодируются вирусным геномом. В исключительных случаях в вирион включаются клеточные нуклеиновые кислоты или полипептиды.

В состав вирусов входят нуклеиновые кислоты и белки. Белки и нуклеиновые кислоты неразрывно связаны между собой. Синтез белков не возможет без нуклеиновых кислот, а синтез кислот – без активного участия белков, ферментов. Известно, что нуклеиновые кислоты и белки состоят из С, О, Н, N, P, S. геном вируса представлен ДНК или РНК. По строению генома зрелые вирусные частицы подразделяют на следующие группы:

1. Вирусы, геном которых – одноцепочная молекула РНК, обладающая матричной активностью;

2. Вирусы, геном которых – одноцепочная РНК не обладающая матричной активностью;

3. Вирусы с одноцепочной фрагментированной РНК, не обладающей матричной активностью;

4. Вирусы, геном которых состоит из нескольких молекул РНК, обладающих матричной активностью;

5. Вирусы с двухцепочной фрагментированной РНК;

6. Вирусы с линейной одноцепочной ДНК;

7. Вирусы с двухцепочной циркулярной ДНК;

8. Вирусы с двухцепочной линейной инфекционной ДНК;

9. Вирусы с двухцепочной линейной неинфекционной ДНК.

По нуклеотидному составу ДНК вирусов беспозвоночных животных более разнообразна, чем ДНК позвоночных. Нуклеиновые кислоты вирионов в большинстве случаев имеют вирусное, а не клеточное происхождение. Инфекционность вирусов связана с нуклеиновой кислотой, а не с белком, входящим в их состав. Это было доказано немецкими учеными Г. Шраммом и А. Гирером (1956). Нуклеиновые кислоты являются хранителем всей генетической информации вируса. Их химический состав и структура принципиально не отличаются от нуклеиновых кислот более высокоорганизованных существ (бактерий, простейших, животных). Большую часть вирусной частицы составляют белки в состав которых входят те же аминокислоты, что и белки других организмов. Вирусный белок представлен в основном полипептидами одного-трех типов. Белки на поверхности вирусной частицы представляют собой антигены, ответственные за образование антител у инфицированных животных. Основная часть белков – это белки, синтезированные в восприимчивой клетке по информации генома вируса. В редких случаях возможно включение белков инфицированной клетки в липопротеидные оболочки и сердцевину некоторых вирусов (вирус птичьего миелобластоза, икосаэдрические вирусы).

Белки вирусов подразделяют на белки капсида, сердцевины, оболочки и ферментативные белки. Помимо белков в липопротеидной оболочки обнаружены липиды и углеводы. Углеводы преимущественно содержаться в гликопротеидных пепломерах на поверхности вирусной частицы.

В составе вирусов обнаружены минеральные вещества К, Na, Ca, Mg, Fe. Они участвуют в формировании связей белка с нуклеиновой кислотой.

Белки вирусов выполняют защитную (защищают от неблагополучного воздействия окружающей среды) и адресную (имеют рецепторы к определенной чувствительной клетке) функции. Кроме этого белки вирусов облегчают проникновение их в восприимчивую клетку.

Функции нуклеиновых кислот вирусов заключаются в следующем. Они программируют наследственность вирусов, участвуют в синтезе белка, отвечают за инфекционные свойства вирусных частиц.

Отдельная вирусная частица получила название вирион. Белковая оболочка вириона называется капсидом. Капсиды состоят из поверхностных белковых субъединиц, которые в свою очередь образованы белковыми молекулами. Различают следующие уровни сложности строения капсида. Первый уровень – отдельные полипептиды (химические единицы), второй – капсомеры (морфологические единицы), которые состоят из одной или нескольких белковых молекул, третий – пепломеры (молекулы, которые образуют выступы на липопротеидной оболочке вириона).

Для вирусов характерны два типа симметрии строения капсида: кубический и спиральный. Вирусы с кубическим типом симметрии называются изометрическими. Все известные ДНК-содержащие вирусы животных обладают изометрическими капсидами. Кристаллографические данные свидетельствуют о трех типах фигур с кубическим типом симметрии: тетраэдр, октаэдр и икосаэдр. Икосаэдрическая симметрия для вирусов предпочтительнее, так как этот тип симметрии наиболее экономичен.

Вирусы со спиральным типом симметрии строения капсида характеризуются тем, что капсид у них построен из одинаковых, спирально расположенных белковых субъединиц (капсомеров).

Бактериофаги (вирусы бактерий) в структурном отношении представляют собой сочетание двух типов симметрии: кубический и спиральной. Головка их представляет собой кубическую структуру, а отросток – спиралевидную.

Характер взаимодействия между нуклеиновой кислотой и капсомерами у вирусов с различным типом симметрии строения капсида различается. У вирусов со спиральным типом строения капсида белковые субъединицы тесно взаимодействуют с нуклеиновой кислотой. У икосоэдрических вирусов максимально выраженного регулярного взаимодействия между каждой белковой субъединицей и нуклеиновой кислотой не существует.

Видео: Вирус гепатита C в печени

 Для вирусов характерна однородность формы и величины, они также не подвижны индивидуальному росту и в процессе своего онтогенеза имеют одинаковый размер.
Морфологические формы вирусов меньше, чем у бактерий.
Основными компонентами вириона (вируса вне клетки) является белковая оболочка - капсид - и с заключенной в неё НК - нуклеокапсид. Морфологические единицы капсида - капсомеры - построены из одного или нескольких белков. Эти капсомеры связаны типом симметрии, располагаются в однозначном порядке:
- спиральная симметрия - формирует цилиндрические структуры;
- кубическая симметрия - формирует структуры близкие к сфероидам.
Вирионы по типу формирования их структуры делятся на:
- простые вирионы - построены по одному типу симметрии;
- сложные вирионы - смешанный тип симметрии (спиральная и кубическая).

Структура простых вирионов

Существуют два типа простых вирионов:
- спиральные;
- сферические.
Спиральные вирионы. Различают:
1. Жесткие палочковидные вирусы имеющие форму жесткого негнущегося очень ломкого цилиндра. Сюда входят вирусы, которые различаются по своей длине 1300-3150 Ǻ при длине вирионов 180-250 Ǻ (вирус табачной мозаики).
Строение вируса табачной мозаики (ВТМ). В электронном микроскопе ВТМ,имеет форму палочек, толщиной 150-180 Ǻ, длина 3000 Ǻ (300 нм). Встречаются и с меньшей длиной, но они не обладают инфекционностью. Капсомеры вириона расположены по спиральному типу симметрии.

Химической, структурной и морфологической единицей является белок с молекулярной массой 17400 Д. Причем на каждые три витка спирали приходится 49 морфологических единицы. Внутри полого цилиндра располагается одноцепочная РНК, размер РНК превышает размер вириона, но РНК упакована компактно и расположена также по винтовой линии между капсомерами. На каждый борот спирали приходится 49 нуклеотидов, каждая молекула белка связана с тремя нуклеотидными остатками.
2. Нитевидные вирусы имеют форму эластичных легко изгибающихся и перекрещивающихся между собой нитей.
Сферические вирионы построены по кубической симметрии. В основе этой структуры лежит структура двадцатигранника - икосаэдр. Самый простой икосаэдр имеет 12 вершин и 20 граней, более сложные - содержат 20Т граней, где Т - число триагулирования.
Т=Р×f2,
Р - размер, класс икосаэдра, принимает значение 1, 3, 7, 13, 19, 21, 37,
f - любое целое число,
f 2 - указывает сколько равнобедренных треугольников расположено на одну грань икосаэдра.
Так, простейшие икосаэдры класса 1 при f =1, имеют 20 граней, при f =2 - 80 граней.
У вирусов с кубическим типом симметрии имеется два типа копсомеров: по вершинам располагаются капсомеры построены из 5-ти идентичных субъединиц (пентомеры), а по боковым граням - из 6 -ти субъединиц (гексомеры).
Размеры вируса определяются числом капсомеров, наименьший сферический вирус класса 1 имеет 12 пентомеров и не содержит гескомеров, а самый крупный вирус содержит 1472 капсомера. РНК или ДНК уложена очень компактно, образуя впячивания внутрь капсомеров по спирали.

Структура сложных вирусов

К сложным вирусам относятся вирусы, которые имеют сложный тип симметрии или дополнительные липидные или углеводные компоненты.
Дополнительные оболочки, либо липидные, либо углеводные, но структура этих оболочек не закодирована в НК. Эти оболочки клеточного происхождения и определить их содержание сложно, часто это фрагменты ЦПМ, которые захватывает вирус при выходе из клетки.
Функции оболочек:
защитная (нечувствительны к некоторым химическим, токсическим веществам);
они служат частью механизма, что облегчает проникновение вируса внутрь клетки, за счет того, что эти оболочки легко сливаются с ЦПМ.
оболочки могут иметь трубчатые выросты, которые обладают антигенной активностью и служат рецепторами для прикрепления ви руса на клеточной поверхности.
Вирусы, которые имеют дополнительные оболочки, полиморфны и напоминают форму пули или наперстка.

Бактериофаги - группа вирусов со сложным типом симметрии.
В 1917 г. Де Еррель обнаружил лизис клеток бактерий на поверхности чашки Петри и назвал этот агент неизвестной природы бактериофагом - пожиратель бактерий.
Встречаются как сложные вирусы, так и простые, они имеют 5 морфологических форм:
- фаги нитевидные (спиральный тип симметрии, в основном ДНК-содержащие);
- фаги с кубическим типом симметрии (имеют зачатки хвостового отростка, это РНК- или одноцеп. ДНК-содержащие);
- фаги с коротким отростком;
- фаги, имеющие два типа симметрии (головку - кубического типа симметрии и несокращающийся чехол - хвостовой отросток - построенный по спиральному типу симметрии) с двуцепочечной ДНК;
- самого сложно типа симметрии (с головкой и сокращающимся чехлом, ДНК-содержащие).
Модель фага Т2.
Это бактериофаг содержащий головку и отросток.
Головка построена по кубическому типу симметрии, внутри содержится двуцепоч. ДНК, которая во много раз превышает размеры фага. ДНК компактно уложена и во многом определяется стабилизирующей функцией белков путрисцина и спермицина, что связаны с двухвалентными металлами, их функция блокировать силы отталкивания и нейтрализуют отрицательный заряд частицы.
Отросток имеет сложное строение, состоит их воротничка, который примыкает к головке, сокращающегося чехла построенного по спиральному типу симметрии, внутри которого располагается полый цилиндр, а на конце отростка расположена шестиугольная базальная пластина, от которой отходят 6 нитей. Базальная пластина служит фактором адсорбции на поверхности клетки, а полый стержень обеспечивает транспортировку ДНК фага внутрь бактериальной клетки.

Вироиды. Вироиды представляют собой молекулу одноцепочечной РНК, ковалентно замкнутой в кольцо, и не содержат белковой оболочки. Вироиды относятся к инфекционным объектам. Некоторые заболевания растений имеют вироидную итеологию, но возбудителей болезней человека и животных - нет. Вироиды обладают трансмессивностью - способностью передаваться от объекта к объекту, часто от растения к растению механическим путем (ветром, насекомыми).

Культивирование вирусов

1. Использование лабораторных животных, но в связи с ограниченной специфичностью для культивирования вирусов необходимо иметь определенных лабораторных животных, также необходимы ткани человека, а это неудобства и нарушение биоэтики.
2. Культивирование виру сов на куриних эмбрионах, но это подходит не для всех вмрусов.
3. Использование культуры клеток или тканей лабораторных животных или человека, которые обладают пермессивностью для вируса - способностью размножать вирусы. Недостаток: клетки при культивировании стареют.
4. Культивирование с использованием гибридных клеток - гибрид нормальной клетки пермессивной для вируса с раковой клеткой. Раковые клетки обладают неконтролируемыми митозами, тем самым продлевая жизнь пермесссивным клеткам.

Влияние факторов внешней среды
1. Нагревание. Большинство вирусов устойчивы при комнатной температуре, но уменьшение инфекционности наступает при 50-60о С. Скорость репродукции у вируса гриппа уменьшается при 38-39о С, а вирус табачной мозаики стабилен при 65о С, но богибает при 70о С.
2. Механическое воздействие
- большинство вирусов устойчивы к осмотическому давлению,
- ультразвук разрушает палочковидные вирусы за несколько минут и слабо действует на сферические вирусы,
- высушивание - одни вирусы легко переносят, а другие при понижении влажности инактивируются при комнатной температуре.
3. Излучение: УФ и ионизирующая радиация вызывают гибель, а в низких дозах - мутации.
4. Химические факторы:
- спирт, йод, перекись водорода,
- антибиотики, но эффективных для системного лечения нет. Есть антибиотики профилактические и есть те, которые используют для местного лечения.
Агентом против вирусов является система интерферонов, продуцируемых человеческим организмом.

Хранение вирусов в лабораториях
Вирусы хранят в лиофильновысушенном состоянии состоянии в системе криопротекторов, высушивание при 60оС из замороженного состояния. При этом вирусная частичка помещается в криопротекторы, что защищают вирусы от повреждения частичками льда. Также вирусы можно хранить в сыворотке крови в атмосфере СО2 при -70о С, в виде стабилизатора используют глицерин.

Основные группы вирусов

Вирусы в зависимости от объекта воздействия делят на: вирусы бактерий, растений, насекомых, животных и человека.
Имеется искусственная классификация вирусов, которая закладывает:
- тип НК (ДНК или РНК),
- структура одно- или двоцепочечная,
- наличие или отсутствие внешней оболочки,
- если одноцепочечная РНК, то +РНК или -РНК,
- наличие в структуре обратной транскриптазы.
Понравилась статья? Поделитесь ей
Наверх