Рецепторная функция белка. Клеточный рецептор Смотреть что такое "Рецепторная функция белка" в других словарях

Или трансмембранных ионных токов.

Вещество, специфически соединяющееся с рецептором, называется лигандом этого рецептора. Внутри организма это обычно гормон или нейромедиатор либо их искусственные заменители, применяемые в качестве лекарственных средств и ядов (агонисты). Некоторые лиганды, напротив, блокируют рецепторы (антагонисты). Когда речь идет об органах чувств, лигандами являются вещества, воздействующие на рецепторы обоняния или вкуса . Кроме того, молекулы зрительных рецепторов реагируют на свет, а в органах слуха и осязания рецепторы чувствительны к механическим воздействиям (давлению или растяжению), вызываемым колебаниями воздуха и иными раздражителями. Существуют также термочувствительные белки-рецепторы и белки-рецепторы, реагирующие на изменение мембранного потенциала.

Энциклопедичный YouTube

  • 1 / 5

    Клеточные рецепторы можно разделить на два основных класса - мембранные рецепторы и внутриклеточные рецепторы.

    Мембранные рецепторы

    Функция «антенн» - это распознавание внешних сигналов. Распознающие участки двух соседних клеток могут обеспечивать сцепление клеток, связываясь друг с другом. Благодаря этому клетки ориентируются и создают ткани в процессе дифференцировки. Распознающие участки присутствуют и в некоторых молекулах, которые находятся в растворе, благодаря чему они избирательно поглощаются клетками, имеющими комплементарные распознающие участки (так, например, поглощаются ЛПНП с помощью рецепторов ЛПНП).

    Два основных класса мембранных рецепторов - это метаботропные рецепторы и ионотропные рецепторы .

    Ионотропные рецепторы представляют собой мембранные каналы , открываемые или закрываемые при связывании с лигандом. Возникающие при этом ионные токи вызывают изменения трансмембранной разности потенциалов и, вследствие этого, возбудимости клетки, а также меняют внутриклеточные концентрации ионов, что может вторично приводить к активации систем внутриклеточных посредников. Одним из наиболее полно изученных ионотропных рецепторов является н-холинорецептор .

    Метаботропные рецепторы связаны с системами внутриклеточных посредников. Изменения их конформации при связывании с лигандом приводит к запуску каскада биохимических реакций, и, в конечном счете, изменению функционального состояния клетки. Основные типы мембранных рецепторов:

    1. Рецепторы, связанные с гетеротримерными G-белками (например, рецептор вазопрессина).
    2. Рецепторы, обладающие внутренней тирозинкиназной активностью (например, рецептор инсулина или рецептор эпидермального фактора роста).

    Рецепторы, связанные с G-белками, представляют собой трансмембранные белки, имеющие 7 трансмембранных доменов, внеклеточный N-конец и внутриклеточный C-конец. Сайт связывания с лигандом находится на внеклеточных петлях, домен связывания с G-белком - вблизи C-конца в цитоплазме.

    Активация рецептора приводит к тому, что его α-субъединица диссоциирует от βγ-субъединичного комплекса и таким образом активируется. После этого она либо активирует, либо наоборот инактивирует фермент , продуцирующий вторичные посредники.

    Рецепторы с тирозинкиназной активностью фосфорилируют последующие внутриклеточные белки, часто тоже являющиеся протеинкиназами, и таким образом передают сигнал внутрь клетки. По структуре это - трансмембранные белки с одним мембранным доменом. Как правило, гомодимеры, субъединицы которых связаны дисульфидными мостиками .

    Внутриклеточные рецепторы

    Внутриклеточные рецепторы - как правило, факторы транскрипции (например, рецепторы глюкокортикоидов) или белки, взаимодействующие с факторами транскрипции. Большинство внутриклеточных рецепторов связываются с лигандами в цитоплазме, переходят в активное состояние, транспортируются вместе с лигандом в ядро клетки, там связываются с ДНК и либо индуцируют, либо подавляют экспрессию некоторого гена или группы генов.
    Особым механизмом действия обладает оксид азота (NO). Проникая через мембрану, этот гормон связывается с растворимой (цитозольной) гуанилатциклазой, которая одновременно является и рецептором оксида азота, и ферментом, который синтезирует вторичный посредник - цГМФ.

    Основные системы внутриклеточной передачи гормонального сигнала

    Аденилатциклазная система

    Центральной частью аденилатциклазной системы является фермент аденилатциклаза , который катализирует превращение АТФ в цАМФ . Этот фермент может либо стимулироваться G s -белком (от английского stimulating), либо подавляться G i -белком (от английского inhibiting). цАМФ после этого связывается с цАМФ-зависимой протеинкиназой, называемой так же протеинкиназа А , PKA. Это приводит к её активации и последующему фосфорилированию белков-эффекторов, выполняющих какую-то физиологическую роль в клетке.

    Фосфолипазно-кальциевая система

    G q -белки активируют фермент фосфолипазу С, которая расщепляет PIP2 (мембранный фосфоинозитол) на две молекулы: инозитол-3-фосфат (IP3) и диацилглицерид. Каждая из этих молекул является вторичным посредником. IP3 далее связывается со своими рецепторами на мембране эндоплазматического ретикулума , что приводит к освобождению кальция в цитоплазму и запуску многих клеточных реакций.

    Гуанилатциклазная система

    Центральной молекулой данной системы является гуанилатциклаза, которая катализирует превращение ГТФ в цГМФ . цГМФ модулирует активность ряда ферментов и ионных каналов. Существует несколько изоформ гуанилатциклазы. Одна из них активируется оксидом азота NO, другая непосредственно связана с рецептором предсердного натриуретического фактора.

    цГМФ контролирует обмен воды и ионный транспорт в почках и кишечнике, а в сердечной мышце служит сигналом релаксации.

    Фармакология рецепторов

    Как правило, рецепторы способны связываться не только с основными эндогенными лигандами, но и с другими структурно сходными молекулами. Этот факт позволяет использовать экзогенные вещества, связывающиеся с рецепторами и меняющие их состояние, в качестве лекарств или ядов.

    Так, например, рецепторы к эндорфинам - нейропептидам, играющим важную роль в модуляции боли и эмоционального состояния, связываются так же с наркотиками группы морфина . Рецептор может иметь, кроме основного участка, или «сайта» связывания со специфичным для этого рецептора гормоном или медиатором, также дополнительные аллостерические регуляторные участки, с которыми связываются другие химические вещества, модулирующие (изменяющие) реакцию рецептора на основной гормональный сигнал - усиливающие или ослабляющие её, или заменяющие собой основной сигнал. Классическим примером такого рецептора с несколькими участками связывания для разных веществ является рецептор гамма-аминомасляной кислоты подтипа А (ГАМК). Он имеет кроме сайта связывания для самой ГАМК, также сайт связывания с бензодиазепинами («бензодиазепиновый сайт»), сайт связывания с барбитуратами («барбитуратный сайт»), сайт связывания с нейростероидами типа аллопрегненолона («стероидный сайт»).

    Многие типы рецепторов могут распознавать одним и тем же участком связывания несколько разных химических веществ, и в зависимости от конкретного присоединившегося вещества находиться более чем в двух пространственных конфигурациях - не только «включено» (гормон на рецепторе) или «выключено» (на рецепторе нет гормона), а еще и в нескольких промежуточных.

    Вещество, со 100 % вероятностью вызывающее при связывании с рецептором переход рецептора в конфигурацию «100 % включено», называется полным агонистом рецептора. Вещество, со 100 % вероятностью вызывающее при связывании с рецептором переход его в конфигурацию «100 % выключено», называется обратным агонистом рецептора. Вещество, вызывающее переход рецептора в одну из промежуточных конфигураций либо вызывающее изменение состояния рецептора не со 100 % вероятностью (то есть часть рецепторов при связывании с этим веществом включится или выключится, а часть - нет), называется частичным агонистом рецептора. По отношению к таким веществам используется также термин агонист-антагонист. Вещество, не меняющее состояния рецептора при связывании и лишь пассивно препятствующее связыванию с рецептором гормона или медиатора, называется конкурентным антагонистом, или блокатором рецептора (антагонизм основан не на выключении рецептора, а на блокаде связывания с рецептором его естественного лиганда).

    Как правило, если какое-то экзогенное вещество имеет рецепторы внутри организма, то в организме есть и эндогенные лиганды для данного рецептора. Так, например, эндогенными лигандами бензодиазепинового

    Защитная функция

    В крови и других жидкостях содержатся белки, которые могут убивать или помогать обезвреживать микробов. В состав плазмы крови входят антитела - белки, каждый из которых узнает определенный вид микроорганизмов или иных чужеродных агентов, - а также защитные белки системы комплемента. Существует несколько классов антител (эти белки еще называют иммуноглобулинами), самый распространенный из них - иммуноглобулин G. В слюне и в слезах содержится белок лизоцим - фермент, расщепляющий муреин и разрушающий клеточные стенки бактерий. При заражении вирусом клетки животных выделяют белок интерферон, препятствующий размножению вируса и образованию новых вирусных частиц.

    Защитную функцию для микроорганизмов выполняют и такие неприятные для нас белки, как микробные токсины - холерный токсин, токсин ботулизма, дифтерийный токсин и т. п. Повреждая клетки нашего организма, они защищают микробов от нас.

    Рецепторная функция

    Белки служат для восприятия и передачи сигналов. В физиологии есть понятие клетки-рецептора, т.е. клетки, которая воспринимает определенный сигнал (например, в сетчатке глаза находятся клетки-зрительные рецепторы). Но в клетках-рецепторах эту работу осуществляют белки-рецепторы. Так, белок родопсин, содержащийся в сетчатке глаза, улавливает кванты света, после чего в клетках сетчатки начинается каскад событий, который приводит к возникновению нервного импульса и передаче сигнала в мозг.

    Белки-рецепторы есть не только в клетках-рецепторах, но и в других клетках. Очень важную роль в организме играют гормоны - вещества, выделяемые одними клетками и регулирующие функцию других клеток. Гормоны связываются со специальными белками - рецепторами гормонов на поверхности или внутри клеток-мишеней.

    Регуляторная функция

    Многие (хотя и далеко не все) гормоны являются белками - например, все гормоны гипофиза и гипоталамуса, инсулин и др. Еще одним примером белков, выполняющих эту функцию, могут служить внутриклеточные белки, регулирующие работу генов.

    Многие белки могут выполнять несколько функций.

    Макромолекулы белков состоят из б-аминокислот. Если в состав полисахаридов обычно входит одна и та же «единица» (иногда две), повторяющаяся много раз, то белки синтезируются из 20 разных аминокислот. После того, как молекула белка собрана, некоторые аминокислотные остатки в составе белка могут подвергаться химическим изменениям, так что в «зрелых» белках можно обнаружить более 30 различных аминокислотных остатков. Такое разнообразие мономеров обеспечивает и многообразие биологических функций, выполняемых белками.

    б-аминокислоты имеют следующее строение:

    здесь R - различные группы атомов (радикалы) у разных аминокислот. Ближайший к карбоксильной группе атом углерода обозначается греческой буквой б, именно с этим атомом соединена аминогруппа в молекулах б-аминокислот.

    В нейтральной среде аминогруппа проявляет слабые основные свойства и присоединяет ион Н+, а карбоксильная - слабо кислотные и диссоциирует с освобождением этого иона, так что хотя в целом суммарный заряд молекулы не изменится, она будет одновременно нести положительно и отрицательно заряженную группу.

    В зависимости от природы радикала R различают гидрофобные (неполярные), гидрофильные (полярные), кислые и щелочные аминокислоты.

    У кислых аминокислот имеется вторая карбоксильная группа. Она немного сильнее карбоксильной группы уксусной кислоты: у аспарагиновой кислоты половина карбоксилов диссоциирована при рН 3,86, у глютаминовой - при рН 4,25, а у уксусной - лишь при 4,8. Среди щелочных аминокислот самой сильной является аргинин: половина его боковых радикалов сохраняет положительный заряд при рН 11,5. У лизина боковой радикал является типичным первичным амином, он остается наполовину ионизированным при рН 9,4. Самая слабая из щелочных аминокислот - гистидин, его имидазольное кольцо наполовину протонировано при рН 6.

    Среди гидрофильных (полярных) также имеются две аминокислоты, способные ионизироваться при физиологических рН - цистеин, у которого SH-группа может отдавать ион Н+ подобно сероводороду, и тирозин, у которого есть слабокислая фенольная группировка. Однако эта способность выражена у них очень слабо: при рН 7 цистеин ионизирован на 8 %, а тирозин - на 0,01 %.

    Для обнаружения б-аминокислот обычно используют нингидриновую реакцию: при взаимодействии аминокислоты с нингидрином образуется ярко окрашенный синий продукт. Кроме того, отдельные аминокислоты дают свои специфические качественные реакции. Так, ароматические аминокислоты дают желтое окрашивание с азотной кислотой (в ходе реакции происходит нитрование ароматического кольца). При подщелачивании среды окраска изменяется на оранжевую (подобное изменение окраски происходит и у индикаторов, например, метилоранжа). Эта реакция под названием ксантопротеиновой используется также для детекции белка, поскольку в большинстве белков есть ароматические аминокислоты; желатин не дает этой реакции, поскольку почти не содержит ни тирозина, ни фенилаланина, ни триптофана. При нагревании с плюмбитом натрия Na2PbO2 цистеин образует черный осадок сульфида свинца PbS.

    Растения и многие микробы могут синтезировать аминокислоты из простых неорганических веществ. Животные могут синтезировать лишь некоторые аминокислоты, другие же должны получать с пищей. Такие аминокислоты называются незаменимыми. Для человека незаменимыми являются фенилаланин, триптофан, треонин, метионин, лизин, лейцин, изолейцин, гистидин, валин и аргинин. К сожалению, злаковые культуры содержат очень мало лизина и триптофана, зато эти аминокислоты в существенно большем количестве содержатся в бобовых культурах. Не случайно традиционные диеты земледельческих народов обычно содержат как злаки, так и бобовые: пшеница (или рожь) и горох, рис и соя, кукуруза и бобы являются классическими примерами такого сочетания у народов разных континентов.

    б-Атом углерода у всех 20 аминокислот находится в состоянии sp3-гибридизации. Все его 4 связи расположены под углом около 109°, так что формулу аминокислоты можно вписать в тетраэдр.

    Легко убедиться, что могут существовать два вида аминокислот, которые являются зеркальными отображениями друг друга. Как бы мы ни перемещали и ни поворачивали их в пространстве, совместить их невозможно - они различаются как правая и левая рука.

    Такой вид изомерии называется оптической изомерией. Он возможен только в том случае, если у центрального атома углерода (он называется асимметрическим центром) со всех 4 сторон находятся разные группы (поэтому глицин не имеет оптических изомеров, а остальные 19 аминокислот имеют). Из двух разных изомерных форм аминокислот ту, что на рис. 1 расположена справа, называют D-формой, а слева - L-формой.

    Основные физические и химические свойства D- и L-изомеров аминокислот одинаковы, однако различаются оптические свойства: их растворы вращают плоскость поляризации света в противоположные стороны. Различна и скорость их реакций с другими оптически активными соединениями.

    Интересно, что в состав белков всех живых организмов от вирусов до человека входят только L-аминокислоты. D-формы встречаются в некоторых антибиотиках, синтезируемых грибами и бактериями. Белки могут образовывать упорядоченную структуру лишь в том случае, если в их состав будут входить только изомеры аминокислот одного типа.

    Краткий обзор:

    Гликокаликс- это внешний по отношению к липопротеидной мембране слой, содержащий полисахаридные цепочки мембранных интегральных белков - гликопротеидов.

    Одной из важнейших функций плазмалеммы является обеспечение коммуникации (связи) клетки с внешней средой посредством присутствующего в мембранах рецепторного аппарата, имеющего белковую или гликопротеиновую природу. Основная функция рецепторных образований плазмалеммы - распознавание внешних сигналов, благодаря которым клетки правильно ориентируются и образуют ткани в процессе дифференцировки. С рецепторной функцией связана деятельность различных регуляторных систем, а также формирование иммунного ответа.

    Основная часть:

    В качестве таких рецепторов на поверхности клетки могут высту­пать белки мембраны или элементы гликокаликса - гликопротеиды. Такие чувствительные к отдельным веществам участки могут быть раз­бросаны по поверхности клетки или собраны в небольшие зоны.

    Разные клетки животных организмов могут обладать разными на­борами рецепторов или же разной чувствительностью одного и того же рецептора.

    Роль многих клеточных рецепторов заключается не только в связы­вании специфических веществ или способности реагировать на физи­ческие факторы, но и в передаче межклеточных сигналов с поверхно­сти внутрь клетки. В настоящее время хорошо изучена система переда­чи сигнала клеткам с помощью некоторых гормонов, в состав которых входят пептидные цепочки. Гормон взаимодействует специфически с рецепторной частью этой системы и, не проникая внутрь клетки, активирует аденилатциклазу (белок, ле­жащий уже в цитоплазматической части плазматической мембраны), которая синтезирует циклический АМФ. Последний активирует или ингибирует внутрикле­точный фермент или группу ферментов. Таким образом, команда (сиг­нал от плазматической мембраны) передается внутрь клетки. Эффек­тивность этой аденилатциклазной системы очень высока. Так, взаимо­действие одной или нескольких молекул гормона может привести за счет синтеза множества молекул цАМФ к усилению сигнала в тысячи раз. В данном случае аденилатциклазная система служит преобразова­телем внешних сигналов.

    Разнообразие и специфичность наборов рецепторов на поверхно­сти клеток приводят к созданию очень сложной системы маркеров, позволяющих отличать свои клетки (той же особи или того же вида) от чужих. Сходные клетки вступают друг с другом во взаимодействия, приводящие к слипанию поверхностей (конъюгация у простейших и бактерий, образование тканевых клеточных комплексов). При этом клетки, отличающиеся набором детерминантных маркеров или не воспринимающие их, либо исключаются из такого взаимодействия, либо (у высших животных) уничтожаются в результате иммунологиче­ских реакций.

    С плазматической мембраной связана локализация специфических рецепторов, реагирующих на физические факторы. Так, в плазматиче­ской мембране или в ее производных у фотосинтетических бактерий и синезеленых водорослей локализованы белки-рецепторы (хлорофиллы), взаимодействующие с квантами света. В плазматической мембра­не светочувствительных клеток животных расположена специальная система фоторецепторных белков (родопсин), с помощью которых световой сигнал превращается в химический, что в свою очередь при­водит к генерации электрического импульса.

    Виды активного транспорта через плазматическую мембрану

    Кратко:


    • первично-активный транспорт - осуществляется транспортными АТФ-азами, которые получили название ионных насосов.
    • вторично-активный транспорт - перенос через мембрану вещества против гради­ента его концентрации за счет энергии градиента концентрации другого вещества, создаваемого в процессе активного транспорта.

    Полный:
    Активный транспорт осуществля­ется транспортными аденозинтрифосфатазами (АТФазами) и проис­ходит за счет энергии гидролиза АТФ.
    Виды активного транспорта веществ:

    • первично-активный транспорт,
    • вторично-активный транспорт.

    Первично-активный транспорт

    Транспорт веществ из среды с низкой кон­центрацией в среду с более высокой концентрацией не может быть объяснен движением по градиенту, т.е. диффузией. Этот процесс осуществляется за счет энергии гидролиза АТФ или энергии, обу­словленной градиентом концентрации каких-либо ионов, чаще все­го натрия. В случае, если источником энергии для активного транс­порта веществ является гидролиз АТФ, а не перемещение через мембрану каких-то других молекул или ионов, транспорт называ­ется первично активным.

    Первично-активный перенос осуществляется транспортными АТФ-азами, которые получили название ионных насосов. В клетках животных наиболее распространена Na+ ,K+ - АТФаза (натриевый насос), пред­ставляющая собой интегральный белок плазматической мембраны и Са2+ - АТФазы, содержащиеся в плазматической мембране сарко-(эндо)-плазматического ретикулума. Все три белка обладают общим свойством - способностью фосфорилироваться и образовывать про­межуточную фосфорилированную форму фермента. В фосфорилиро-ванном состоянии фермент может находиться в двух конформациях, которые принято обозначать Е1 и Е2.Конформация фермента - это способ пространственной ориентации (укладки) полипептидной цепи его молекулы. Две указанные конформации фермента характеризуются различным сродством к переносимым ионам, т.е. различной способ­ностью связывать транспортируемые ионы.

    Вторично-активный транспорт

    Вторичным активным транспортом называется перенос через мембрану вещества против гради­ента его концентрации за счет энергии градиента концентрации другого вещества, создаваемого в процессе активного транспорта. В клетках животных основным источником энергии для вторичного активного транспорта служит энергия градиента концентрации ионов натрия, который создается за счет работы Na+/K+ - АТФазы. Напри­мер, мембрана клеток слизистой оболочки тонкого кишечника со­держит белок, осуществляющий перенос (симпорт) глюкозы и Na+ в эпителиоциты. Транспорт глюкозы осуществляется лишь в том слу­чае, если Na+, одновременно с глюкозой связываясь с указанным белком, переносится по электрохимическому градиенту. Электрохи­мический градиент для Na+ поддерживается активным транспортом этих катионов из клетки.

    В головном мозге работа Na+-насоса сопряжена с обратным по­глощением (реабсорбцией) медиаторов -физиологически активных веществ, которые выделяются из нервных окончаний при действии возбуждающих факторов.

    В кардиомиоцитах и гладкомышечных клетках с функционирова­нием Na+, K+-АТФазы связан транспорт Са2+ через плазматическую мембрану, благодаря присутствию в мембране клеток белка, осу­ществляющего противотранспорт (антипорт) Na+ и Са2+. Ионы каль­ция переносятся чере мембрану клеток в обмен на ионы натрия и за счет энергии концентрационного градиента ионов натрия.

    В клетках обнаружен белок, обменивающий внеклеточные ионы натрия на внутриклеточные протоны - Na+/H+ -обменник. Этот переносчик играет важную роль в поддержании постоянства внут­риклеточного рН. Скорость, с которой осуществляется Na+/Ca2+ и Na+/H+ - обмен, пропорциональна электрохимическому градиенту Na+ через мембрану. При уменьшении внеклеточной концентрации Na+ ингибировании Na+ , K+-АТФазы сердечными гликозидами или в бескалиевой среде внутриклеточная концентрация кальция и про­тонов увеличена. Это увеличение внутриклеточной концентрации Са2+ при ингибировании Na+, K+-АТФазы лежит в основе применения в клинической практике сердечных гликозидов для усиления сердеч­ных сокращений.

    Различные транспортные АТФазы, локализованные в клеточных мембранах и участвующие в механизмах переноса веществ, являются основным элементом молекулярных устройств - насосов, обеспечивающих избирательное поглощение и откачивание определенных веществ (например, электролитов) клеткой. Активный специфический транспорт неэлектролитов (молекулярный транспорт) реализуется с помощью нескольких типов молекулярных машин - насосов и переносчиков. Транспорт неэлектролитов (моносахаридов, аминокислот и других мономеров) может сопрягаться с симпортом - транспортом другого вещества, движение которого по градиенту концентрации является источником энергии для первого процесса. Симпорт может обеспечиваться ионными градиентами (например, натрия) без непосредственного участия АТФ.

    Транспортные АТФазы- это высокомолекулярные транспортные белки, способные расщеплять АТФ с высвобождением энергии. Этот процесс служит двигателем активного транспорта. Таким образом переносятся протоны (протонный насос_ или неорганические ионы (ионный насос).

    Активный транспорт осуществляется путём эндо- и экзоцитоза.
    Эндоцитоз- образование пузырьков путём впячивания плазматической мембраны при поглощении твёрдых частиц (фагоцитоз) или растворённых веществ (пиноцитоз). Возникающие при этом гладкие или окаймлённые пузырьки называются фагосомами или пиносомами. Путём эндоцитоза яйцеклетки поглощают желточные белки, лейкоциты поглащают чужеродные частицы и иммуноглобулины, почечные канальцы всасывают белки из первичной мочи.
    Экзоцитоз- процесс, противоположный эндоцитозу. Различные пузырьки из аппарата Гольджи, лизосом сливаются с плазматической мембраной, освобождая своё содержимое наружу. При этом мембрана пузырька может либо встраиваться в плазматическую мембрану, либо в форме пузырька возвращаться в цитоплазму.

    Рецепторную функцию клетки обеспечивают рецепторы, которые реализуют ответные реакции определенными способами.

    Способ влияния связан с переносом информации, возникающей при присоединении веществ, поступающих извне с рецепторными комплексами мембраны внутрь клетки.

    Ионотропные рецепторные комплексы формируют сложные молекулярные или надмолекулярные соединения, в составе которых имеются ионные каналы. При соединении с биологически активным веществом происходит открытие или открытие ионных каналов. Скорость возбуждения клетки высокая. Ионотропные рецепторы расположены преимущественно в области синапсов и участвуют в передаче возбуждающих и тормозных влияний.

    Метаботропные рецепторные комплексы связаны с интегральными белками-посредниками, передающими информацию на внутреннюю поверхность. В первую очередь это G-белки и тирозинкиназы мембраны. Белки-посредники возбуждают ферменты внутренней поверхности клеточной мембраны, а те, в свою очередь, синтезируют вторые посредники - низкомолекулярные вещества, запускающие биологические реакции клетки. Эти рецепторы иногда называют медленными. Через подобные механизмы действует большинство гормонов и медиаторов, которые плохо проникают в клетку.

    Рецепторы, регулирующие поступление молекул в клетки, например липидов в составе липопротеинов низкой плотности. Данная группа рецепторов способна изменять проницаемость биологических мембран, влияя таким образом на химический состав внутри клетки.

    Адгезивные рецепторы (семейства интегринов, кадгеринов, иммуноглобулинов, селектинов и др.) связывают соседние клетки или клетку со структурами межклеточной среды, например с базальной мембраной. Возможность адгезивных взаимодействий имеет существенное значение в жизнедеятельности клетки и всего организма в целом. Потеря способности клетки к адгезии сопровождается ее неконтролируемой миграцией (метастазированием) и нарушением дифференцировки. Патологические нарушения функции адгезивных рецепторов характерны для злокачественных опухолевых клеток.

    Собственно процесс рецепции происходит с помощью специальных гликопротеинов - рецепторов. Они располагаются в надмембранном слое - гликокаликсе клетки.

    Рецепторы обеспечивают восприятие специфических раздражителей: гормонов, биологически активных веществ, мембран соседних клеток, адгезивных молекул межклеточного вещества и др. Рецепторы - это высокоспециализированные структуры клетки. Они могут быть высокоспецифичными (высокоаффинными) или менее специфичными (низкоаффинными). Степень специфичности определяет степень чувствительности клетки. Наиболее высокоаффинными являются рецепторы к гормонам.

    Рецепторные комплексы характерны также и для внутреннего слоя мембраны. Они находятся на мембранных и немембранных органеллах, внутреннем и наружном листке кариолеммы и т. д.

    В ответ на действие сигнала (соединение рецептора с веществом-регулятором) возникает цепь биохимических реакций, приводящих к формированию биологических ответов - возбуждению или торможению клетки. Рецепторы к полипептидам, производным аминокислот, антигенным комплексам, гликопротеинам и др. находятся на мембране клетки. У некоторых рецепторов имеется связь с белками, обеспечивающими образование вторых посредников, а также с белками ионных каналов. Такие рецепторные системы называются метаботропными.

    Возбуждение в метаботропных рецепторах, вызванное сигналом, может передаваться вглубь клетки несколькими способами. В одном случае взаимодействие рецептора с сигнальной молекулой изменяет стереологическую конфигурацию рецептора, что меняет структуру так называемого G-белка, а тот, в свою очередь, активирует образование сигнальных молекул цитоплазмы (вторых посредников).

    Имеются Gs-белки, активирующие аденилатциклазу с образованием цАМФ, Gi-белки, ингибирующие аденилатциклазу, Gp-белки, активирующие фосфолипазы С и повышающие содержание ионов кальция в цитозоле. Существуют также Gt-белки, активирующие фосфодиэстеразу циклического гуанозинмонофосфата (цГМФ) и снижающие содержание цГМФ, что ведет к торможению (гиперполяризации мембраны) клетки. Циклическая АМФ (цАМФ) активирует протеинкиназы и ускоряет биохимические реакции в клетке.

    Во втором случае рецептор связан с тирозинкиназами, которые активируют Ras-G-белок и запускают Ras-каскад. В результате этого процесса образуется инозитол-1,4,5-трифосфат, диацилглицерол. Это вызывает цепь каталитических реакций, в том числе транскрипцию.

    Рецепторы могут быть связаны с ионными каналами, изменять их проницаемость, вызывать деполяризацию мембраны, проникновение в клетку ионов кальция и т. д. Ионотропные рецепторные комплексы содержат несколько молекул - это рецепторные белки, воспринимающие сигнальную молекулу. Они присоединяются к белкам эффекторного устройства - ионным каналам. Фермент инактивации разрывает связь рецептора с сигнальной молекулой медиатора или других сигнальных веществ.

    Наряду с сигнальными функциями часть рецепторов играет важную роль в адгезии и агрегации - прилипании клеток к себе подобным и/или межклеточным структурам. «Узнавание» рецептором гликокаликса родственных клеток сопровождается одновременной агрегацией. Важно, что такие рецепторы имеют индивидуальную, органную и тканевую специфичность. Примером могут служить селектины, интегрины и кадгерины. Они придают клеткам антигенные свойства и позволяют им «узнавать» друг друга.

    Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

    Важную роль в жизнедеятельности клетки играет рецепторная функция мембраны. Она связана с локализацией на плазматической мембране специальных структур (рецепторных белков), связанных со специфическим узнаванием химических или физических факторов. Многие пронзающие белки представляют собой гликопротеиды - с наружной стороны клетки они содержат полисахаридные боковые цепочки. Часть таких гликопротеидов, покрывающих клетку "лесом" молекулярных антенн, выполняет роль рецепторов гормонов. Когда определенный гормон связывается со своим рецептором, он изменяет структуру гликопротеида, что приводит к запусканию клеточного ответа. Открываются каналы, по которым определенные вещества поступают в клетку или выводятся из нее. Клеточная поверхность обладает большим набором рецепторов, делающих возможными специфические реакции с различными агентами. Роль многих клеточных рецепторов заключается в передаче сигналов извне внутрь клетки.

    22. Рецепторы клетки: понятие, расположение, разновидности, строение.

    На плазматических мембранах клетки расположены сигнальные молекулы - белки, получившие название рецепторы. Рецепторы клеток связывают молекулу и инициируют ответ. Они представлены трансмембранными белкоми, имеющих специальный участок для связывания физиологически активных молекул - гормонов и нейромедиаторов. Многие рецепторные белки в ответ на связывание определенных молекул меняют транспортные свойства мембран. Вследствие этого может изменяться полярность мембран, генерироваться нервный импульс или изменяться обмен веществ.

    Различают внутриклеточные рецепторы и рецепторы, располагающиеся на поверхности клетки в плазматической мембране. Среди них выделяют рецепторы двух типов - связанные с каналами клетки и не связаны с каналами. Они различаются между собой по скорости и избирательностью воздействия сигнала на определенные мишени. Рецепторы, связанные с каналами, после взаимодействия с химическими веществами (гормон, нейро- медиатор) способствуют образованию в мембране открытого канала, в результате чего сразу же меняется ее проницаемость. Рецепторы, не связанные с каналами, также взаимодействуют с химическими веществами, но другой природы, в основном это ферменты. Здесь эффект косвенный, относительно замедленный, но более длительный. Функция этих рецепторов лежит в основе обучения и памяти.

    23. Транспорт веществ через клеточную оболочку: понятие, разновидности, примеры.

    Мембранный транспорт- транспорт веществ сквозь клеточную мембрану в клетку или из клетки, осуществляемый с помощью различных механизмов - простой диффузии, облегченной диффузии и активного транспорта. Разновидности транспорта описаны в 16 и 17 ответах.

    24. Межклеточные контакты: понятие, разновидности, значение.

    Межклеточные контакты - соединения между клетками, образованные при помощи белков. Они обеспечивают непосредственную связь между клетками. Кроме того, клетки взаимодействуют друг с другом на расстоянии с помощью сигналов (главным образом - сигнальных веществ), передаваемых через межклеточное вещество.

    Каждый тип межклеточных контактов формируется за счет специфических белков, подавляющее большинство которых - трансмембранные белки. Специальные адапторные белки могут соединять белки межклеточных контактов с цитоскелетом, а специальные "скелетные" белки - соединять отдельные молекулы этих белков в сложную надмолекулярную структуру. Во многих случаях межклеточные соединения разрушаются при удалении из среды ионов Ca2+.

Понравилась статья? Поделитесь ей
Наверх